Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (82)

All (82) (20 to 30 of 82 results)

  • Articles and reports: 12-001-X201100211602
    Description:

    This article attempts to answer the three questions appearing in the title. It starts by discussing unique features of complex survey data not shared by other data sets, which require special attention but suggest a large variety of diverse inference procedures. Next a large number of different approaches proposed in the literature for handling these features are reviewed with discussion on their merits and limitations. The approaches differ in the conditions underlying their use, additional data required for their application, goodness of fit testing, the inference objectives that they accommodate, statistical efficiency, computational demands, and the skills required from analysts fitting the model. The last part of the paper presents simulation results, which compare the approaches when estimating linear regression coefficients from a stratified sample in terms of bias, variance, and coverage rates. It concludes with a short discussion of pending issues.

    Release date: 2011-12-21

  • Surveys and statistical programs – Documentation: 12-001-X201100211603
    Description:

    In many sample surveys there are items requesting binary response (e.g., obese, not obese) from a number of small areas. Inference is required about the probability for a positive response (e.g., obese) in each area, the probability being the same for all individuals in each area and different across areas. Because of the sparseness of the data within areas, direct estimators are not reliable, and there is a need to use data from other areas to improve inference for a specific area. Essentially, a priori the areas are assumed to be similar, and a hierarchical Bayesian model, the standard beta-binomial model, is a natural choice. The innovation is that a practitioner may have much-needed additional prior information about a linear combination of the probabilities. For example, a weighted average of the probabilities is a parameter, and information can be elicited about this parameter, thereby making the Bayesian paradigm appropriate. We have modified the standard beta-binomial model for small areas to incorporate the prior information on the linear combination of the probabilities, which we call a constraint. Thus, there are three cases. The practitioner (a) does not specify a constraint, (b) specifies a constraint and the parameter completely, and (c) specifies a constraint and information which can be used to construct a prior distribution for the parameter. The griddy Gibbs sampler is used to fit the models. To illustrate our method, we use an example on obesity of children in the National Health and Nutrition Examination Survey in which the small areas are formed by crossing school (middle, high), ethnicity (white, black, Mexican) and gender (male, female). We use a simulation study to assess some of the statistical features of our method. We have shown that the gain in precision beyond (a) is in the order with (b) larger than (c).

    Release date: 2011-12-21

  • Articles and reports: 12-001-X201100111446
    Description:

    Small area estimation based on linear mixed models can be inefficient when the underlying relationships are non-linear. In this paper we introduce SAE techniques for variables that can be modelled linearly following a non-linear transformation. In particular, we extend the model-based direct estimator of Chandra and Chambers (2005, 2009) to data that are consistent with a linear mixed model in the logarithmic scale, using model calibration to define appropriate weights for use in this estimator. Our results show that the resulting transformation-based estimator is both efficient and robust with respect to the distribution of the random effects in the model. An application to business survey data demonstrates the satisfactory performance of the method.

    Release date: 2011-06-29

  • Articles and reports: 12-001-X201100111451
    Description:

    In the calibration method proposed by Deville and Särndal (1992), the calibration equations take only exact estimates of auxiliary variable totals into account. This article examines other parameters besides totals for calibration. Parameters that are considered complex include the ratio, median or variance of auxiliary variables.

    Release date: 2011-06-29

  • Surveys and statistical programs – Documentation: 12-001-X201000111250
    Description:

    We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.

    Release date: 2010-06-29

  • Articles and reports: 11-536-X200900110806
    Description:

    Recent work using a pseudo empirical likelihood (EL) method for finite population inferences with complex survey data focused primarily on a single survey sample, non-stratified or stratified, with considerable effort devoted to computational procedures. In this talk we present a pseudo empirical likelihood approach to inference from multiple surveys and multiple-frame surveys, two commonly encountered problems in survey practice. We show that inferences about the common parameter of interest and the effective use of various types of auxiliary information can be conveniently carried out through the constrained maximization of joint pseudo EL function. We obtain asymptotic results which are used for constructing the pseudo EL ratio confidence intervals, either using a chi-square approximation or a bootstrap calibration. All related computational problems can be handled using existing algorithms on stratified sampling after suitable re-formulation.

    Release date: 2009-08-11

  • Articles and reports: 12-001-X200800110606
    Description:

    Data from election polls in the US are typically presented in two-way categorical tables, and there are many polls before the actual election in November. For example, in the Buckeye State Poll in 1998 for governor there are three polls, January, April and October; the first category represents the candidates (e.g., Fisher, Taft and other) and the second category represents the current status of the voters (likely to vote and not likely to vote for governor of Ohio). There is a substantial number of undecided voters for one or both categories in all three polls, and we use a Bayesian method to allocate the undecided voters to the three candidates. This method permits modeling different patterns of missingness under ignorable and nonignorable assumptions, and a multinomial-Dirichlet model is used to estimate the cell probabilities which can help to predict the winner. We propose a time-dependent nonignorable nonresponse model for the three tables. Here, a nonignorable nonresponse model is centered on an ignorable nonresponse model to induce some flexibility and uncertainty about ignorabilty or nonignorability. As competitors we also consider two other models, an ignorable and a nonignorable nonresponse model. These latter two models assume a common stochastic process to borrow strength over time. Markov chain Monte Carlo methods are used to fit the models. We also construct a parameter that can potentially be used to predict the winner among the candidates in the November election.

    Release date: 2008-06-26

  • Articles and reports: 11-522-X200600110392
    Description:

    We use a robust Bayesian method to analyze data with possibly nonignorable nonresponse and selection bias. A robust logistic regression model is used to relate the response indicators (Bernoulli random variable) to the covariates, which are available for everyone in the finite population. This relationship can adequately explain the difference between respondents and nonrespondents for the sample. This robust model is obtained by expanding the standard logistic regression model to a mixture of Student's distributions, thereby providing propensity scores (selection probability) which are used to construct adjustment cells. The nonrespondents' values are filled in by drawing a random sample from a kernel density estimator, formed from the respondents' values within the adjustment cells. Prediction uses a linear spline rank-based regression of the response variable on the covariates by areas, sampling the errors from another kernel density estimator; thereby further robustifying our method. We use Markov chain Monte Carlo (MCMC) methods to fit our model. The posterior distribution of a quantile of the response variable is obtained within each sub-area using the order statistic over all the individuals (sampled and nonsampled). We compare our robust method with recent parametric methods

    Release date: 2008-03-17

  • Articles and reports: 11-522-X200600110398
    Description:

    The study of longitudinal data is vital in terms of accurately observing changes in responses of interest for individuals, communities, and larger populations over time. Linear mixed effects models (for continuous responses observed over time) and generalized linear mixed effects models and generalized estimating equations (for more general responses such as binary or count data observed over time) are the most popular techniques used for analyzing longitudinal data from health studies, though, as with all modeling techniques, these approaches have limitations, partly due to their underlying assumptions. In this review paper, we will discuss some advances, including curve-based techniques, which make modeling longitudinal data more flexible. Three examples will be presented from the health literature utilizing these more flexible procedures, with the goal of demonstrating that some otherwise difficult questions can be reasonably answered when analyzing complex longitudinal data in population health studies.

    Release date: 2008-03-17

  • Articles and reports: 11-522-X200600110419
    Description:

    Health services research generally relies on observational data to compare outcomes of patients receiving different therapies. Comparisons of patient groups in observational studies may be biased, in that outcomes differ due to both the effects of treatment and the effects of patient prognosis. In some cases, especially when data are collected on detailed clinical risk factors, these differences can be controlled for using statistical or epidemiological methods. In other cases, when unmeasured characteristics of the patient population affect both the decision to provide therapy and the outcome, these differences cannot be removed using standard techniques. Use of health administrative data requires particular cautions in undertaking observational studies since important clinical information does not exist. We discuss several statistical and epidemiological approaches to remove overt (measurable) and hidden (unmeasurable) bias in observational studies. These include regression model-based case-mix adjustment, propensity-based matching, redefining the exposure variable of interest, and the econometric technique of instrumental variable (IV) analysis. These methods are illustrated using examples from the medical literature including prediction of one-year mortality following heart attack; the return to health care spending in higher spending U.S. regions in terms of clinical and financial benefits; and the long-term survival benefits of invasive cardiac management of heart attack patients. It is possible to use health administrative data for observational studies provided careful attention is paid to addressing issues of reverse causation and unmeasured confounding.

    Release date: 2008-03-17
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (69)

Analysis (69) (10 to 20 of 69 results)

  • Articles and reports: 11-522-X201700014759
    Description:

    Many of the challenges and opportunities of modern data science have to do with dynamic aspects: evolving populations, the growing volume of administrative and commercial data on individuals and establishments, continuous flows of data and the capacity to analyze and summarize them in real time, and the deterioration of data absent the resources to maintain them. With its emphasis on data quality and supportable results, the domain of Official Statistics is ideal for highlighting statistical and data science issues in a variety of contexts. The messages of the talk include the importance of population frames and their maintenance; the potential for use of multi-frame methods and linkages; how the use of large scale non-survey data as auxiliary information shapes the objects of inference; the complexity of models for large data sets; the importance of recursive methods and regularization; and the benefits of sophisticated data visualization tools in capturing change.

    Release date: 2016-03-24

  • Articles and reports: 11-522-X201300014251
    Description:

    I present a modeller's perspective on the current status quo in official statistics surveys-based inference. In doing so, I try to identify the strengths and weaknesses of the design and model-based inferential positions that survey sampling, at least as far as the official statistics world is concerned, finds itself at present. I close with an example from adaptive survey design that illustrates why taking a model-based perspective (either frequentist or Bayesian) represents the best way for official statistics to avoid the debilitating 'inferential schizophrenia' that seems inevitable if current methodologies are applied to the emerging information requirements of today's world (and possibly even tomorrow's).

    Release date: 2014-10-31

  • Articles and reports: 11-522-X201300014252
    Description:

    Although estimating finite populations characteristics from probability samples has been very successful for large samples, inferences from non-probability samples may also be possible. Non-probability samples have been criticized due to self-selection bias and the lack of methods for estimating the precision of the estimates. The wide spread access to the Web and the ability to do very inexpensive data collection on the Web has reinvigorated interest in this topic. We review of non-probability sampling strategies and summarize some of the key issues. We then propose conditions under which non-probability sampling may be a reasonable approach. We conclude with ideas for future research.

    Release date: 2014-10-31

  • Articles and reports: 11-522-X201300014280
    Description:

    During the last decade, web panel surveys have been established as a fast and cost-efficient method in market surveys. The rationale for this is new developments in information technology, in particular the continued rapid growth of internet and computer use among the public. Also growing nonresponse rates and prices forced down in the survey industry lie behind this change. However, there are some serious inherent risks connected with web panel surveys, not least selection bias due to the self-selection of respondents. There are also risks of coverage and measurement errors. The absence of an inferential framework and of data quality indicators is an obstacle against using the web panel approach for high-quality statistics about general populations. Still, there seems to be increasing challenges for some national statistical institutes by a new form of competition for ad hoc statistics and even official statistics from web panel surveys.This paper explores the question of design and use of web panels in a scientifically sound way. An outline is given of a standard from the Swedish Survey Society for performance metrics to assess some quality aspects of results from web panel surveys. Decomposition of bias and mitigation of bias risks are discussed in some detail. Some ideas are presented for combining web panel surveys and traditional surveys to achieve controlled cost-efficient inference.

    Release date: 2014-10-31

  • Articles and reports: 12-001-X201400114004
    Description:

    In 2009, two major surveys in the Governments Division of the U.S. Census Bureau were redesigned to reduce sample size, save resources, and improve the precision of the estimates (Cheng, Corcoran, Barth and Hogue 2009). The new design divides each of the traditional state by government-type strata with sufficiently many units into two sub-strata according to each governmental unit’s total payroll, in order to sample less from the sub-stratum with small size units. The model-assisted approach is adopted in estimating population totals. Regression estimators using auxiliary variables are obtained either within each created sub-stratum or within the original stratum by collapsing two sub-strata. A decision-based method was proposed in Cheng, Slud and Hogue (2010), applying a hypothesis test to decide which regression estimator is used within each original stratum. Consistency and asymptotic normality of these model-assisted estimators are established here, under a design-based or model-assisted asymptotic framework. Our asymptotic results also suggest two types of consistent variance estimators, one obtained by substituting unknown quantities in the asymptotic variances and the other by applying the bootstrap. The performance of all the estimators of totals and of their variance estimators are examined in some empirical studies. The U.S. Annual Survey of Public Employment and Payroll (ASPEP) is used to motivate and illustrate our study.

    Release date: 2014-06-27

  • Articles and reports: 82-003-X201300611796
    Geography: Canada
    Description:

    The study assesses the feasibility of using statistical modelling techniques to fill information gaps related to risk factors, specifically, smoking status, in linked long-form census data.

    Release date: 2013-06-19

  • Articles and reports: 12-001-X201100211602
    Description:

    This article attempts to answer the three questions appearing in the title. It starts by discussing unique features of complex survey data not shared by other data sets, which require special attention but suggest a large variety of diverse inference procedures. Next a large number of different approaches proposed in the literature for handling these features are reviewed with discussion on their merits and limitations. The approaches differ in the conditions underlying their use, additional data required for their application, goodness of fit testing, the inference objectives that they accommodate, statistical efficiency, computational demands, and the skills required from analysts fitting the model. The last part of the paper presents simulation results, which compare the approaches when estimating linear regression coefficients from a stratified sample in terms of bias, variance, and coverage rates. It concludes with a short discussion of pending issues.

    Release date: 2011-12-21

  • Articles and reports: 12-001-X201100111446
    Description:

    Small area estimation based on linear mixed models can be inefficient when the underlying relationships are non-linear. In this paper we introduce SAE techniques for variables that can be modelled linearly following a non-linear transformation. In particular, we extend the model-based direct estimator of Chandra and Chambers (2005, 2009) to data that are consistent with a linear mixed model in the logarithmic scale, using model calibration to define appropriate weights for use in this estimator. Our results show that the resulting transformation-based estimator is both efficient and robust with respect to the distribution of the random effects in the model. An application to business survey data demonstrates the satisfactory performance of the method.

    Release date: 2011-06-29

  • Articles and reports: 12-001-X201100111451
    Description:

    In the calibration method proposed by Deville and Särndal (1992), the calibration equations take only exact estimates of auxiliary variable totals into account. This article examines other parameters besides totals for calibration. Parameters that are considered complex include the ratio, median or variance of auxiliary variables.

    Release date: 2011-06-29

  • Articles and reports: 11-536-X200900110806
    Description:

    Recent work using a pseudo empirical likelihood (EL) method for finite population inferences with complex survey data focused primarily on a single survey sample, non-stratified or stratified, with considerable effort devoted to computational procedures. In this talk we present a pseudo empirical likelihood approach to inference from multiple surveys and multiple-frame surveys, two commonly encountered problems in survey practice. We show that inferences about the common parameter of interest and the effective use of various types of auxiliary information can be conveniently carried out through the constrained maximization of joint pseudo EL function. We obtain asymptotic results which are used for constructing the pseudo EL ratio confidence intervals, either using a chi-square approximation or a bootstrap calibration. All related computational problems can be handled using existing algorithms on stratified sampling after suitable re-formulation.

    Release date: 2009-08-11
Reference (16)

Reference (16) (10 to 20 of 16 results)

  • Surveys and statistical programs – Documentation: 11-522-X19990015650
    Description:

    The U.S. Manufacturing Plant Ownership Change Database (OCD) was constructed using plant-level data taken from the Census Bureau's Longitudinal Research Database (LRD). It contains data on all manufacturing plants that have experienced ownership change at least once during the period 1963-92. This paper reports the status of the OCD and discuss its research possibilities. For an empirical demonstration, data taken from the database are used to study the effects of ownership changes on plant closure.

    Release date: 2000-03-02

  • Surveys and statistical programs – Documentation: 11-522-X19990015658
    Description:

    Radon, a naturally occurring gas found at some level in most homes, is an established risk factor for human lung cancer. The U.S. National Research Council (1999) has recently completed a comprehensive evaluation of the health risks of residential exposure to radon, and developed models for projecting radon lung cancer risks in the general population. This analysis suggests that radon may play a role in the etiology of 10-15% of all lung cancer cases in the United States, although these estimates are subject to considerable uncertainty. In this article, we present a partial analysis of uncertainty and variability in estimates of lung cancer risk due to residential exposure to radon in the United States using a general framework for the analysis of uncertainty and variability that we have developed previously. Specifically, we focus on estimates of the age-specific excess relative risk (ERR) and lifetime relative risk (LRR), both of which vary substantially among individuals.

    Release date: 2000-03-02

  • Geographic files and documentation: 92F0138M1993001
    Geography: Canada
    Description:

    The Geography Divisions of Statistics Canada and the U.S. Bureau of the Census have commenced a cooperative research program in order to foster an improved and expanded perspective on geographic areas and their relevance. One of the major objectives is to determine a common geographic area to form a geostatistical basis for cross-border research, analysis and mapping.

    This report, which represents the first stage of the research, provides a list of comparable pairs of Canadian and U.S. standard geographic areas based on current definitions. Statistics Canada and the U.S. Bureau of the Census have two basic types of standard geographic entities: legislative/administrative areas (called "legal" entities in the U.S.) and statistical areas.

    The preliminary pairing of geographic areas are based on face-value definitions only. The definitions are based on the June 4, 1991 Census of Population and Housing for Canada and the April 1, 1990 Census of Population and Housing for the U.S.A. The important aspect is the overall conceptual comparability, not the precise numerical thresholds used for delineating the areas.

    Data users should use this report as a general guide to compare the census geographic areas of Canada and the United States, and should be aware that differences in settlement patterns and population levels preclude a precise one-to-one relationship between conceptually similar areas. The geographic areas compared in this report provide a framework for further empirical research and analysis.

    Release date: 1999-03-05

  • Surveys and statistical programs – Documentation: 12-001-X19970013101
    Description:

    In the main body of statistics, sampling is often disposed of by assuming a sampling process that selects random variables such that they are independent and identically distributed (IID). Important techniques, like regression and contingency table analysis, were developed largely in the IID world; hence, adjustments are needed to use them in complex survey settings. Rather than adjust the analysis, however, what is new in the present formulation is to draw a second sample from the original sample. In this second sample, the first set of selections are inverted, so as to yield at the end a simple random sample. Of course, to employ this two-step process to draw a single simple random sample from the usually much larger complex survey would be inefficient, so multiple simple random samples are drawn and a way to base inferences on them developed. Not all original samples can be inverted; but many practical special cases are discussed which cover a wide range of practices.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19970013102
    Description:

    The selection of auxiliary variables is considered for regression estimation in finite populations under a simple random sampling design. This problem is a basic one for model-based and model-assisted survey sampling approaches and is of practical importance when the number of variables available is large. An approach is developed in which a mean squared error estimator is minimised. This approach is compared to alternative approaches using a fixed set of auxiliary variables, a conventional significance test criterion, a condition number reduction approach and a ridge regression approach. The proposed approach is found to perform well in terms of efficiency. It is noted that the variable selection approach affects the properties of standard variance estimators and thus leads to a problem of variance estimation.

    Release date: 1997-08-18

  • Surveys and statistical programs – Documentation: 12-001-X19960022980
    Description:

    In this paper, we study a confidence interval estimation method for a finite population average when some auxiliairy information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing methods to construct confidence intervals for population averages may result in very poor conditional coverage probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to improve the precision of the normal approximation. The transformed data are then used to make inference on the original population average, and the auxiliary information is incorporated into the inference directly, or by calibration with empirical likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation is needed, our approach performs well compared to the usual regression method.

    Release date: 1997-01-30
Date modified: