Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (82)

All (82) (10 to 20 of 82 results)

  • Articles and reports: 11-522-X201700014759
    Description:

    Many of the challenges and opportunities of modern data science have to do with dynamic aspects: evolving populations, the growing volume of administrative and commercial data on individuals and establishments, continuous flows of data and the capacity to analyze and summarize them in real time, and the deterioration of data absent the resources to maintain them. With its emphasis on data quality and supportable results, the domain of Official Statistics is ideal for highlighting statistical and data science issues in a variety of contexts. The messages of the talk include the importance of population frames and their maintenance; the potential for use of multi-frame methods and linkages; how the use of large scale non-survey data as auxiliary information shapes the objects of inference; the complexity of models for large data sets; the importance of recursive methods and regularization; and the benefits of sophisticated data visualization tools in capturing change.

    Release date: 2016-03-24

  • Articles and reports: 11-522-X201300014251
    Description:

    I present a modeller's perspective on the current status quo in official statistics surveys-based inference. In doing so, I try to identify the strengths and weaknesses of the design and model-based inferential positions that survey sampling, at least as far as the official statistics world is concerned, finds itself at present. I close with an example from adaptive survey design that illustrates why taking a model-based perspective (either frequentist or Bayesian) represents the best way for official statistics to avoid the debilitating 'inferential schizophrenia' that seems inevitable if current methodologies are applied to the emerging information requirements of today's world (and possibly even tomorrow's).

    Release date: 2014-10-31

  • Articles and reports: 11-522-X201300014252
    Description:

    Although estimating finite populations characteristics from probability samples has been very successful for large samples, inferences from non-probability samples may also be possible. Non-probability samples have been criticized due to self-selection bias and the lack of methods for estimating the precision of the estimates. The wide spread access to the Web and the ability to do very inexpensive data collection on the Web has reinvigorated interest in this topic. We review of non-probability sampling strategies and summarize some of the key issues. We then propose conditions under which non-probability sampling may be a reasonable approach. We conclude with ideas for future research.

    Release date: 2014-10-31

  • Surveys and statistical programs – Documentation: 11-522-X201300014259
    Description:

    In an effort to reduce response burden on farm operators, Statistics Canada is studying alternative approaches to telephone surveys for producing field crop estimates. One option is to publish harvested area and yield estimates in September as is currently done, but to calculate them using models based on satellite and weather data, and data from the July telephone survey. However before adopting such an approach, a method must be found which produces estimates with a sufficient level of accuracy. Research is taking place to investigate different possibilities. Initial research results and issues to consider are discussed in this paper.

    Release date: 2014-10-31

  • Articles and reports: 11-522-X201300014280
    Description:

    During the last decade, web panel surveys have been established as a fast and cost-efficient method in market surveys. The rationale for this is new developments in information technology, in particular the continued rapid growth of internet and computer use among the public. Also growing nonresponse rates and prices forced down in the survey industry lie behind this change. However, there are some serious inherent risks connected with web panel surveys, not least selection bias due to the self-selection of respondents. There are also risks of coverage and measurement errors. The absence of an inferential framework and of data quality indicators is an obstacle against using the web panel approach for high-quality statistics about general populations. Still, there seems to be increasing challenges for some national statistical institutes by a new form of competition for ad hoc statistics and even official statistics from web panel surveys.This paper explores the question of design and use of web panels in a scientifically sound way. An outline is given of a standard from the Swedish Survey Society for performance metrics to assess some quality aspects of results from web panel surveys. Decomposition of bias and mitigation of bias risks are discussed in some detail. Some ideas are presented for combining web panel surveys and traditional surveys to achieve controlled cost-efficient inference.

    Release date: 2014-10-31

  • Articles and reports: 12-001-X201400114004
    Description:

    In 2009, two major surveys in the Governments Division of the U.S. Census Bureau were redesigned to reduce sample size, save resources, and improve the precision of the estimates (Cheng, Corcoran, Barth and Hogue 2009). The new design divides each of the traditional state by government-type strata with sufficiently many units into two sub-strata according to each governmental unit’s total payroll, in order to sample less from the sub-stratum with small size units. The model-assisted approach is adopted in estimating population totals. Regression estimators using auxiliary variables are obtained either within each created sub-stratum or within the original stratum by collapsing two sub-strata. A decision-based method was proposed in Cheng, Slud and Hogue (2010), applying a hypothesis test to decide which regression estimator is used within each original stratum. Consistency and asymptotic normality of these model-assisted estimators are established here, under a design-based or model-assisted asymptotic framework. Our asymptotic results also suggest two types of consistent variance estimators, one obtained by substituting unknown quantities in the asymptotic variances and the other by applying the bootstrap. The performance of all the estimators of totals and of their variance estimators are examined in some empirical studies. The U.S. Annual Survey of Public Employment and Payroll (ASPEP) is used to motivate and illustrate our study.

    Release date: 2014-06-27

  • Surveys and statistical programs – Documentation: 12-001-X201300211887
    Description:

    Multi-level models are extensively used for analyzing survey data with the design hierarchy matching the model hierarchy. We propose a unified approach, based on a design-weighted log composite likelihood, for two-level models that leads to design-model consistent estimators of the model parameters even when the within cluster sample sizes are small provided the number of sample clusters is large. This method can handle both linear and generalized linear two-level models and it requires level 2 and level 1 inclusion probabilities and level 1 joint inclusion probabilities, where level 2 represents a cluster and level 1 an element within a cluster. Results of a simulation study demonstrating superior performance of the proposed method relative to existing methods under informative sampling are also reported.

    Release date: 2014-01-15

  • Articles and reports: 82-003-X201300611796
    Geography: Canada
    Description:

    The study assesses the feasibility of using statistical modelling techniques to fill information gaps related to risk factors, specifically, smoking status, in linked long-form census data.

    Release date: 2013-06-19

  • Surveys and statistical programs – Documentation: 12-001-X201200211758
    Description:

    This paper develops two Bayesian methods for inference about finite population quantiles of continuous survey variables from unequal probability sampling. The first method estimates cumulative distribution functions of the continuous survey variable by fitting a number of probit penalized spline regression models on the inclusion probabilities. The finite population quantiles are then obtained by inverting the estimated distribution function. This method is quite computationally demanding. The second method predicts non-sampled values by assuming a smoothly-varying relationship between the continuous survey variable and the probability of inclusion, by modeling both the mean function and the variance function using splines. The two Bayesian spline-model-based estimators yield a desirable balance between robustness and efficiency. Simulation studies show that both methods yield smaller root mean squared errors than the sample-weighted estimator and the ratio and difference estimators described by Rao, Kovar, and Mantel (RKM 1990), and are more robust to model misspecification than the regression through the origin model-based estimator described in Chambers and Dunstan (1986). When the sample size is small, the 95% credible intervals of the two new methods have closer to nominal confidence coverage than the sample-weighted estimator.

    Release date: 2012-12-19

  • Surveys and statistical programs – Documentation: 12-001-X201200111688
    Description:

    We study the problem of nonignorable nonresponse in a two dimensional contingency table which can be constructed for each of several small areas when there is both item and unit nonresponse. In general, the provision for both types of nonresponse with small areas introduces significant additional complexity in the estimation of model parameters. For this paper, we conceptualize the full data array for each area to consist of a table for complete data and three supplemental tables for missing row data, missing column data, and missing row and column data. For nonignorable nonresponse, the total cell probabilities are allowed to vary by area, cell and these three types of "missingness". The underlying cell probabilities (i.e., those which would apply if full classification were always possible) for each area are generated from a common distribution and their similarity across the areas is parametrically quantified. Our approach is an extension of the selection approach for nonignorable nonresponse investigated by Nandram and Choi (2002a, b) for binary data; this extension creates additional complexity because of the multivariate nature of the data coupled with the small area structure. As in that earlier work, the extension is an expansion model centered on an ignorable nonresponse model so that the total cell probability is dependent upon which of the categories is the response. Our investigation employs hierarchical Bayesian models and Markov chain Monte Carlo methods for posterior inference. The models and methods are illustrated with data from the third National Health and Nutrition Examination Survey.

    Release date: 2012-06-27
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (69)

Analysis (69) (40 to 50 of 69 results)

  • Articles and reports: 11-522-X20020016745
    Description:

    The attractiveness of the Regression Discontinuity Design (RDD) rests on its close similarity to a normal experimental design. On the other hand, it is of limited applicability since it is not often the case that units are assigned to the treatment group on the basis of an observable (to the analyst) pre-program measure. Besides, it only allows identification of the mean impact on a very specific subpopulation. In this technical paper, we show that the RDD straightforwardly generalizes to the instances in which the units' eligibility is established on an observable pre-program measure with eligible units allowed to freely self-select into the program. This set-up also proves to be very convenient for building a specification test on conventional non-experimental estimators of the program mean impact. The data requirements are clearly described.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016750
    Description:

    Analyses of data from social and economic surveys sometimes use generalized variance function models to approximate the design variance of point estimators of population means and proportions. Analysts may use the resulting standard error estimates to compute associated confidence intervals or test statistics for the means and proportions of interest. In comparison with design-based variance estimators computed directly from survey microdata, generalized variance function models have several potential advantages, as will be discussed in this paper, including operational simplicity; increased stability of standard errors; and, for cases involving public-use datasets, reduction of disclosure limitation problems arising from the public release of stratum and cluster indicators.

    These potential advantages, however, may be offset in part by several inferential issues. First, the properties of inferential statistics based on generalized variance functions (e.g., confidence interval coverage rates and widths) depend heavily on the relative empirical magnitudes of the components of variability associated, respectively, with:

    (a) the random selection of a subset of items used in estimation of the generalized variance function model(b) the selection of sample units under a complex sample design (c) the lack of fit of the generalized variance function model (d) the generation of a finite population under a superpopulation model.

    Second, under conditions, one may link each of components (a) through (d) with different empirical measures of the predictive adequacy of a generalized variance function model. Consequently, these measures of predictive adequacy can offer us some insight into the extent to which a given generalized variance function model may be appropriate for inferential use in specific applications.

    Some of the proposed diagnostics are applied to data from the US Survey of Doctoral Recipients and the US Current Employment Survey. For the Survey of Doctoral Recipients, components (a), (c) and (d) are of principal concern. For the Current Employment Survey, components (b), (c) and (d) receive principal attention, and the availability of population microdata allow the development of especially detailed models for components (b) and (c).

    Release date: 2004-09-13

  • Articles and reports: 12-001-X20030026785
    Description:

    To avoid disclosures, one approach is to release partially synthetic, public use microdata sets. These comprise the units originally surveyed, but some collected values, for example sensitive values at high risk of disclosure or values of key identifiers, are replaced with multiple imputations. Although partially synthetic approaches are currently used to protect public use data, valid methods of inference have not been developed for them. This article presents such methods. They are based on the concepts of multiple imputation for missing data but use different rules for combining point and variance estimates. The combining rules also differ from those for fully synthetic data sets developed by Raghunathan, Reiter and Rubin (2003). The validity of these new rules is illustrated in simulation studies.

    Release date: 2004-01-27

  • Articles and reports: 12-001-X20030016610
    Description:

    In the presence of item nonreponse, unweighted imputation methods are often used in practice but they generally lead to biased estimators under uniform response within imputation classes. Following Skinner and Rao (2002), we propose a bias-adjusted estimator of a population mean under unweighted ratio imputation and random hot-deck imputation and derive linearization variance estimators. A small simulation study is conducted to study the performance of the methods in terms of bias and mean square error. Relative bias and relative stability of the variance estimators are also studied.

    Release date: 2003-07-31

  • Articles and reports: 92F0138M2003002
    Description:

    This working paper describes the preliminary 2006 census metropolitan areas and census agglomerations and is presented for user feedback. The paper briefly describes the factors that have resulted in changes to some of the census metropolitan areas and census agglomerations and includes tables and maps that list and illustrate these changes to their limits and to the component census subdivisions.

    Release date: 2003-07-11

  • Articles and reports: 92F0138M2003001
    Description:

    The goal of this working paper is to assess how well Canada's current method of delineating Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs) reflects the metropolitan nature of these geographic areas according to the facilities and services they provide. The effectiveness of Canada's delineation methodology can be evaluated by applying a functional model to Statistics Canada's CMAs and CAs.

    As a consequence of the research undertaken for this working paper, Statistics Canada has proposed lowering the urban core population threshold it uses to define CMAs: a CA will be promoted to a CMA if it has a total population of at least 100,000, of which 50,000 or more live in the urban core. User consultation on this proposal took place in the fall of 2002 as part of the 2006 Census content determination process.

    Release date: 2003-03-31

  • Articles and reports: 11F0019M2003199
    Geography: Canada
    Description:

    Using a nationally representative sample of establishments, we have examined whether selected alternative work practices (AWPs) tend to reduce quit rates. Overall, our analysis provides strong evidence of a negative association between these AWPs and quit rates among establishments of more than 10 employees operating in high-skill services. We also found some evidence of a negative association in low-skill services. However, the magnitude of this negative association was reduced substantially when we added an indicator of whether the workplace has a formal policy of information sharing. There was very little evidence of a negative association in manufacturing. While establishments with self-directed workgroups have lower quit rates than others, none of the bundles of work practices considered yielded a negative and statistically significant effect. We surmise that key AWPs might be more successful in reducing labour turnover in technologically complex environments than in low-skill ones.

    Release date: 2003-03-17

  • Articles and reports: 12-001-X20020026428
    Description:

    The analysis of survey data from different geographical areas where the data from each area are polychotomous can be easily performed using hierarchical Bayesian models, even if there are small cell counts in some of these areas. However, there are difficulties when the survey data have missing information in the form of non-response, especially when the characteristics of the respondents differ from the non-respondents. We use the selection approach for estimation when there are non-respondents because it permits inference for all the parameters. Specifically, we describe a hierarchical Bayesian model to analyse multinomial non-ignorable non-response data from different geographical areas; some of them can be small. For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response probabilities. This permits a 'borrowing of strength' of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is complex, inference is sampling-based and Markov chain Monte Carlo methods are used. We apply our method to provide an analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES III). For simplicity, the BMI is categorized into 3 natural levels, and this is done for each of 8 age-race-sex domains and 34 counties. We assess the performance of our model using the NHANES III data and simulated examples, which show our model works reasonably well.

    Release date: 2003-01-29

  • Articles and reports: 11-522-X20010016277
    Description:

    This paper discusses in detail issues dealing with the technical aspects of designing and conducting surveys. It is intended for an audience of survey methodologists.

    The advent of computerized record-linkage methodology has facilitated the conduct of cohort mortality studies in which exposure data in one database are electronically linked with mortality data from another database. In this article, the impact of linkage errors on estimates of epidemiological indicators of risk, such as standardized mortality ratios and relative risk regression model parameters, is explored. It is shown that these indicators can be subject to bias and additional variability in the presence of linkage errors, with false links and non-links leading to positive and negative bias, respectively, in estimates of the standardized mortality ratio. Although linkage errors always increase the uncertainty in the estimates, bias can be effectively eliminated in the special case in which the false positive rate equals the false negative rate within homogeneous states defined by cross-classification of the covariates of interest.

    Release date: 2002-09-12

  • Articles and reports: 89-552-M2000007
    Geography: Canada
    Description:

    This paper addresses the problem of statistical inference with ordinal variates and examines the robustness to alternative literacy measurement and scaling choices of rankings of average literacy and of estimates of the impact of literacy on individual earnings.

    Release date: 2000-06-02
Reference (16)

Reference (16) (0 to 10 of 16 results)

  • Surveys and statistical programs – Documentation: 11-522-X201300014259
    Description:

    In an effort to reduce response burden on farm operators, Statistics Canada is studying alternative approaches to telephone surveys for producing field crop estimates. One option is to publish harvested area and yield estimates in September as is currently done, but to calculate them using models based on satellite and weather data, and data from the July telephone survey. However before adopting such an approach, a method must be found which produces estimates with a sufficient level of accuracy. Research is taking place to investigate different possibilities. Initial research results and issues to consider are discussed in this paper.

    Release date: 2014-10-31

  • Surveys and statistical programs – Documentation: 12-001-X201300211887
    Description:

    Multi-level models are extensively used for analyzing survey data with the design hierarchy matching the model hierarchy. We propose a unified approach, based on a design-weighted log composite likelihood, for two-level models that leads to design-model consistent estimators of the model parameters even when the within cluster sample sizes are small provided the number of sample clusters is large. This method can handle both linear and generalized linear two-level models and it requires level 2 and level 1 inclusion probabilities and level 1 joint inclusion probabilities, where level 2 represents a cluster and level 1 an element within a cluster. Results of a simulation study demonstrating superior performance of the proposed method relative to existing methods under informative sampling are also reported.

    Release date: 2014-01-15

  • Surveys and statistical programs – Documentation: 12-001-X201200211758
    Description:

    This paper develops two Bayesian methods for inference about finite population quantiles of continuous survey variables from unequal probability sampling. The first method estimates cumulative distribution functions of the continuous survey variable by fitting a number of probit penalized spline regression models on the inclusion probabilities. The finite population quantiles are then obtained by inverting the estimated distribution function. This method is quite computationally demanding. The second method predicts non-sampled values by assuming a smoothly-varying relationship between the continuous survey variable and the probability of inclusion, by modeling both the mean function and the variance function using splines. The two Bayesian spline-model-based estimators yield a desirable balance between robustness and efficiency. Simulation studies show that both methods yield smaller root mean squared errors than the sample-weighted estimator and the ratio and difference estimators described by Rao, Kovar, and Mantel (RKM 1990), and are more robust to model misspecification than the regression through the origin model-based estimator described in Chambers and Dunstan (1986). When the sample size is small, the 95% credible intervals of the two new methods have closer to nominal confidence coverage than the sample-weighted estimator.

    Release date: 2012-12-19

  • Surveys and statistical programs – Documentation: 12-001-X201200111688
    Description:

    We study the problem of nonignorable nonresponse in a two dimensional contingency table which can be constructed for each of several small areas when there is both item and unit nonresponse. In general, the provision for both types of nonresponse with small areas introduces significant additional complexity in the estimation of model parameters. For this paper, we conceptualize the full data array for each area to consist of a table for complete data and three supplemental tables for missing row data, missing column data, and missing row and column data. For nonignorable nonresponse, the total cell probabilities are allowed to vary by area, cell and these three types of "missingness". The underlying cell probabilities (i.e., those which would apply if full classification were always possible) for each area are generated from a common distribution and their similarity across the areas is parametrically quantified. Our approach is an extension of the selection approach for nonignorable nonresponse investigated by Nandram and Choi (2002a, b) for binary data; this extension creates additional complexity because of the multivariate nature of the data coupled with the small area structure. As in that earlier work, the extension is an expansion model centered on an ignorable nonresponse model so that the total cell probability is dependent upon which of the categories is the response. Our investigation employs hierarchical Bayesian models and Markov chain Monte Carlo methods for posterior inference. The models and methods are illustrated with data from the third National Health and Nutrition Examination Survey.

    Release date: 2012-06-27

  • Surveys and statistical programs – Documentation: 12-001-X201100211603
    Description:

    In many sample surveys there are items requesting binary response (e.g., obese, not obese) from a number of small areas. Inference is required about the probability for a positive response (e.g., obese) in each area, the probability being the same for all individuals in each area and different across areas. Because of the sparseness of the data within areas, direct estimators are not reliable, and there is a need to use data from other areas to improve inference for a specific area. Essentially, a priori the areas are assumed to be similar, and a hierarchical Bayesian model, the standard beta-binomial model, is a natural choice. The innovation is that a practitioner may have much-needed additional prior information about a linear combination of the probabilities. For example, a weighted average of the probabilities is a parameter, and information can be elicited about this parameter, thereby making the Bayesian paradigm appropriate. We have modified the standard beta-binomial model for small areas to incorporate the prior information on the linear combination of the probabilities, which we call a constraint. Thus, there are three cases. The practitioner (a) does not specify a constraint, (b) specifies a constraint and the parameter completely, and (c) specifies a constraint and information which can be used to construct a prior distribution for the parameter. The griddy Gibbs sampler is used to fit the models. To illustrate our method, we use an example on obesity of children in the National Health and Nutrition Examination Survey in which the small areas are formed by crossing school (middle, high), ethnicity (white, black, Mexican) and gender (male, female). We use a simulation study to assess some of the statistical features of our method. We have shown that the gain in precision beyond (a) is in the order with (b) larger than (c).

    Release date: 2011-12-21

  • Surveys and statistical programs – Documentation: 12-001-X201000111250
    Description:

    We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.

    Release date: 2010-06-29

  • Surveys and statistical programs – Documentation: 12-002-X20040027035
    Description:

    As part of the processing of the National Longitudinal Survey of Children and Youth (NLSCY) cycle 4 data, historical revisions have been made to the data of the first 3 cycles, either to correct errors or to update the data. During processing, particular attention was given to the PERSRUK (Person Identifier) and the FIELDRUK (Household Identifier). The same level of attention has not been given to the other identifiers that are included in the data base, the CHILDID (Person identifier) and the _IDHD01 (Household identifier). These identifiers have been created for the public files and can also be found in the master files by default. The PERSRUK should be used to link records between files and the FIELDRUK to determine the household when using the master files.

    Release date: 2004-10-05

  • Surveys and statistical programs – Documentation: 13F0026M2001003
    Description:

    Initial results from the Survey of Financial Security (SFS), which provides information on the net worth of Canadians, were released on March 15 2001, in The daily. The survey collected information on the value of the financial and non-financial assets owned by each family unit and on the amount of their debt.

    Statistics Canada is currently refining this initial estimate of net worth by adding to it an estimate of the value of benefits accrued in employer pension plans. This is an important addition to any asset and debt survey as, for many family units, it is likely to be one of the largest assets. With the aging of the population, information on pension accumulations is greatly needed to better understand the financial situation of those nearing retirement. These updated estimates of the Survey of Financial Security will be released in late fall 2001.

    The process for estimating the value of employer pension plan benefits is a complex one. This document describes the methodology for estimating that value, for the following groups: a) persons who belonged to an RPP at the time of the survey (referred to as current plan members); b) persons who had previously belonged to an RPP and either left the money in the plan or transferred it to a new plan; c) persons who are receiving RPP benefits.

    This methodology was proposed by Hubert Frenken and Michael Cohen. The former has many years of experience with Statistics Canada working with data on employer pension plans; the latter is a principal with the actuarial consulting firm William M. Mercer. Earlier this year, Statistics Canada carried out a public consultation on the proposed methodology. This report includes updates made as a result of feedback received from data users.

    Release date: 2001-09-05

  • Surveys and statistical programs – Documentation: 13F0026M2001002
    Description:

    The Survey of Financial Security (SFS) will provide information on the net worth of Canadians. In order to do this, information was collected - in May and June 1999 - on the value of the assets and debts of each of the families or unattached individuals in the sample. The value of one particular asset is not easy to determine, or to estimate. That is the present value of the amount people have accrued in their employer pension plan. These plans are often called registered pension plans (RPP), as they must be registered with Canada Customs and Revenue Agency. Although some RPP members receive estimates of the value of their accrued benefit, in most cases plan members would not know this amount. However, it is likely to be one of the largest assets for many family units. And, as the baby boomers approach retirement, information on their pension accumulations is much needed to better understand their financial readiness for this transition.

    The intent of this paper is to: present, for discussion, a methodology for estimating the present value of employer pension plan benefits for the Survey of Financial Security; and to seek feedback on the proposed methodology. This document proposes a methodology for estimating the value of employer pension plan benefits for the following groups:a) persons who belonged to an RPP at the time of the survey (referred to as current plan members); b) persons who had previously belonged to an RPP and either left the money in the plan or transferred it to a new plan; c) persons who are receiving RPP benefits.

    Release date: 2001-02-07

  • Surveys and statistical programs – Documentation: 11-522-X19990015642
    Description:

    The Longitudinal Immigration Database (IMDB) links immigration and taxation administrative records into a comprehensive source of data on the labour market behaviour of the landed immigrant population in Canada. It covers the period 1980 to 1995 and will be updated annually starting with the 1996 tax year in 1999. Statistics Canada manages the database on behalf of a federal-provincial consortium led by Citizenship and Immigration Canada. The IMDB was created specifically to respond to the need for detailed and reliable data on the performance and impact of immigration policies and programs. It is the only source of data at Statistics Canada that provides a direct link between immigration policy levers and the economic performance of immigrants. The paper will examine the issues related to the development of a longitudinal database combining administrative records to support policy-relevant research and analysis. Discussion will focus specifically on the methodological, conceptual, analytical and privacy issues involved in the creation and ongoing development of this database. The paper will also touch briefly on research findings, which illustrate the policy outcome links the IMDB allows policy-makers to investigate.

    Release date: 2000-03-02
Date modified: