
Survey Methodology

Catalogue no. 12-001-X 
ISSN 1492-0921

by Xiao-Li Meng

Comments on “Statistical inference with 
non-probability survey samples” – Miniaturizing 
data defect correlation: A versatile strategy for 
handling non-probability samples

Release date: December 15, 2022



Published by authority of the Minister responsible for Statistics Canada

© His Majesty the King in Right of Canada as represented by the Minister of Industry, 2022

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
Email at infostats@statcan.gc.ca 
 
Telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following numbers: 

•• Statistical Information Service	 1-800-263-1136
•• National telecommunications device for the hearing impaired	 1-800-363-7629
•• Fax line	 1-514-283-9350

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada 
has developed standards of service that its employees observe.  
To obtain a copy of these service standards, please contact  
Statistics Canada toll-free at 1-800-263-1136. The service   
standards are also published on www.statcan.gc.ca under 
“Contact us” > “Standards of service to the public.”

Note of appreciation
Canada owes the success of its statistical system to a 
long‑standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information 
could not be produced without their continued co‑operation  
and goodwill.

https://www.statcan.gc.ca/eng/reference/licence
https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00006-eng.htm
https://www.statcan.gc.ca
mailto:infostats%40statcan.gc.ca%20?subject=
https://www.statcan.gc.ca
https://www.statcan.gc.ca/eng/about/service/standards


Survey Methodology, December 2022 339 
Vol. 48, No. 2, pp. 339-360 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Xiao-Li Meng, Department of Statistics, Harvard University, Cambridge, MA 02138. E-mail: meng@stat.harvard.edu. 

 

Comments on “Statistical inference with non-probability 

survey samples” ‒ Miniaturizing data defect correlation: A 

versatile strategy for handling non-probability samples 

Xiao-Li Meng1 

Abstract 

Non-probability samples are deprived of the powerful design probability for randomization-based inference. 

This deprivation, however, encourages us to take advantage of a natural divine probability that comes with 

any finite population. A key metric from this perspective is the data defect correlation (ddc), which is the 

model-free finite-population correlation between the individual’s sample inclusion indicator and the 

individual’s attribute being sampled. A data generating mechanism is equivalent to a probability sampling, in 

terms of design effect, if and only if its corresponding ddc is of N-1/2 (stochastic) order, where N is the 

population size (Meng, 2018). Consequently, existing valid linear estimation methods for non-probability 

samples can be recast as various strategies to miniaturize the ddc down to the N-1/2 order. The quasi design-

based methods accomplish this task by diminishing the variability among the N inclusion propensities via 

weighting. The super-population model-based approach achieves the same goal through reducing the 

variability of the N individual attributes by replacing them with their residuals from a regression model. The 

doubly robust estimators enjoy their celebrated property because a correlation is zero whenever one of the 

variables being correlated is constant, regardless of which one. Understanding the commonality of these 

methods through ddc also helps us see clearly the possibility of “double-plus robustness”: a valid estimation 

without relying on the full validity of either the regression model or the estimated inclusion propensity, 

neither of which is guaranteed because both rely on device probability. The insight generated by ddc also 

suggests counterbalancing sub-sampling, a strategy aimed at creating a miniature of the population out of a 

non-probability sample, and with favorable quality-quantity trade-off because mean-squared errors are much 

more sensitive to ddc than to the sample size, especially for large populations. 
 

Key Words: Data defect index; Design probability; Divine probability; Device probability; Design-based inference; 
Model-assisted survey estimators; Non-response bias. 

 

 

1. Distinguish among design, divine, and device probabilities 
 

1.1 What can statistics/statisticians say about non-probability samples? 
 

Dealing with non-probability samples is a delicate business, especially for statisticians. Those who 

believe statistics is all about probabilistic reasoning and inference may question if statistics has anything 

useful to offer to the non-probabilistic world. Whereas such questioning may reflect the inquirers’ 

ignorance about or even hostility towards statistics, taking the question conceptually, it deserves 

statisticians’ introspection and extrospection. What kind of probabilities are we referring to when the 

sample is non-probabilistic? The entire probabilistic sampling theory and methods are built upon the 

randomness introduced by powerful sampling mechanisms, which then yields the beautiful designed-

based inferential framework without having to conceive anything else is random (Kish, 1965; Wu and 

Thompson, 2020; Lohr, 2021). When that power ‒ and beauty ‒ is taken away from us, what’s left for 

statisticians? 
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A philosophical answer by some statisticians would be to dismiss the question altogether by declaring 

that there is no such thing as probability sample in real life. (I was reminded by Andrew Gelman about 

this sentiment when I sought his comments on this discussion article. See 

https://statmodeling.stat.columbia.edu/2014/08/06 for a related discussion.) By the time the data arrive at 

our desk or disk, even the most carefully designed probability sampling scheme would be compromised 

by the imperfections in execution, from (uncontrollable) defects in sampling frames to non-responses at 

various stages and to measurement errors in the responses. In this sense, the notion of probability sample 

is always a theoretical one, much like efficient market theory in economics, which offers a mathematically 

elegant framework for idealization and for approximations, but should never be taken literally (e.g., Lo, 

2017). 

The timely article by Professor Changbao Wu (Wu, 2022) provides a more practical answer, by 

showcasing how statisticians have dealt with non-probability samples in the long literature of sample 

surveys and (of course) observational studies, especially for causal inference; see Elliott and Valliant 

(2017) and Zhang (2019) for two complementary overviews addressing the same challenge. To better 

understand how probability theory is useful for non-probability samples, it is important to recognize (at 

least) three types of probabilistic constructs for statistical inference, as listed in Section 1.2. Non-

probability samples take away only one of the three, and as a result, they typically force a stronger 

reliance on the other two. 

With these conceptual issues clarified, the rest sections discuss a unified strategy for dealing with non-

probability samples. Section 2 reviews a fundamental identity for estimation error, which has led to the 

construction of data defect correlation (Meng, 2018). Section 3 then discusses how this construct suggests 

the unified strategy. Section 4 demonstrates the strategy respectively for the qp  and p  settings in Wu 

(2022). Section 5 then applies the strategy to the two settings simultaneously to reveal an immediate 

insight into the celebrated double robustness, as reviewed in Wu (2022). Inspired by the same construct, 

Section 6 explores counterbalancing sampling as an alternative strategy to weighting. Section 7 concludes 

with a general call to treat probability sampling theory as an aspiration instead of the centerpiece of survey 

and sampling research. 

 

1.2 A trio of probability constructs 
 

The first of the three named constructs below, design probability, is self-explanatory. It is at the heart 

of sampling theory and reified by practical implementation, however imperfect the implementation might 

be. The distinction between the next two, divine probability and device probability, may be more nuanced 

especially at practical levels. But their conceptual differences are no less important than distinguishing 

between an estimand and an estimator. Fittingly, the data recording or inclusion indicator, a key quantity 

in modeling non-probability samples, provides a concrete illustration of all three probabilistic constructs; 

see the leading paragraph of Section 4. 
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Design Probability. A paramount concept and tool for statistics – and for general science ‒ is randomized 

replications (Craiu, Gong and Meng, 2022). By designing and executing a probabilistic mechanism to 

generate randomized replications, we create probabilistic data that can be used directly for making 

verifiable inferential statements. Besides probabilistic sampling in surveys, randomization in clinical 

trials, bootstraps for assessing variability, permutation tests for hypothesis testing, and Monte Carlo 

simulations for computing are all examples of statistical methods that are built on design probability. Non-

probability samples, by definition, do not come with such design probability, at least not an identified one. 

Hence, the phrase non-probability samples should be understood as a short hand for “samples without an 

identified design probability construct”. 

It is worth to remind ourselves, however, that there is a potential for design probabilities to come back 

in a substantial way especially for large non-probability data sets, such as administrative data, due to the 

adoption of differential privacy (Dwork, 2008), for example by US Census Bureau (see the editorial by 

Gong, Groshen and Vadhan, 2022, and the special issue in Harvard Data Science Review it introduces). 

Differential privacy methods inject well-designed random noise into data for the purpose of protecting 

data privacy while not unduly sacrificing data utility. Like the design probability used for probabilistic 

sampling, the fact that the noise-injecting mechanism is designed by the data curator, and is made publicly 

known, renders the transparency that is critical for valid statistical inference by the data user (Gong, 

2022). The area of how to properly analyze non-probability data with differential privacy protection is 

wide open. Even more so is the fascinating area of how to take into account the existing defects in non-

probability data when designing probabilistic protection mechanisms for data privacy to avoid adding 

unnecessary noise. Readers who are interested in forming a big picture of the statistical issues involved in 

data privacy should consult the excellent overview article by Slavkovic and Seeman (2022) on the general 

area of “statistical data privacy”. 

Divine Probability. In the absence of design probability for randomization-based inference, in order to 

conduct a (conventional) statistical inference, we typically conceptualize that the data at hand is a 

realization of a generative probabilistic mechanism given by nature or God. (I learned about the term 

“God’s model” during my PhD training, which I took as an expression for faith or something beyond 

human control, rather than reflecting one’s religious belief. The phrase “divine” is adopted here with a 

similar connotation.) We do so regardless of whether we believe or not that the world is intrinsically 

deterministic or stochastic (e.g., see David Peat, 2002; Li and Meng, 2021). We need to assume this divine 

probability primarily because of the restrictive nature of the probabilistic framework to which we are so 

accustomed. For example, in order to invoke the assumption of missing at random, we need to conjure a 

probabilistic mechanism under which the concept “missing at random” (Rubin, 1976) can be formalized. 

As Elliott and Valliant (2017) emphasized, the quasi-randomization approach, which corresponds to the 

qp  framework of Wu (2022), “assumes that the nonprobability sample actually does have a probability 

sampling mechanism, albeit one with probabilities that have to be estimated under identifying 
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assumptions”. That is, we replace the design probability by a divine probability that we have faith for its 

existence, which then typically is treated as the “truth” or at least as an estimand. 

Conceptually, therefore, we need to recognize that the assumption of any particular kind of divine 

probability is not innocent, as otherwise we will not need to rely on our faith to proceed. Nor is it always 

necessary. Any finite population provides a natural histogram for any quantifiable attributes or a 

contingency table for any categorizable attributes of its constituents, and hence it induces a divine 

probability without referencing any kind of randomness, conceptualized or realized, if our inferential 

target is the finite population itself (not a super-population that generates it, for example). The empirical 

likelihood approach takes advantage of this natural probability framework, which also turns out to be 

fundamental for quantifying data quality via data defect correlation (see Meng, 2018). The same emphasis 

was made by Zhang (2019), whose unified criterion was based on the same identity for building data 

defect correlation; see Section 2 below. 

Device Probability. By far, most probabilities used in statistical modeling are devices for expressing our 

belief, prior knowledge, assumptions, idealizations, compromises, or even desperation (e.g., imposing a 

prior distribution to ensure identifiability since nothing else works). Whereas modeling reality has always 

been a key emphasis in the statistical literature, we inevitably must make a variety of simplifications, 

approximations, and some times deliberate distortions in order to deal with practical constraints (e.g., the 

use of variational inference for computational efficiency; see Blei, Kucukelbir and McAuliffe (2017)). 

Consequently, many of these device probabilities do not come with a requirement of being realizable, or 

even coherent mathematically (e.g., the employment of incompatible conditional probability distributions 

for multiple chain imputation; see Van Buuren and Oudshoorn (1999)). Nor are they easy or even possible 

to be validated, as Zhang (2019) investigated and argued in the context of non-probability sampling, 

especially with the superpopulation modeling approach, which corresponds to the p  framework of Wu 

(2022). Nevertheless, device probabilities are the workhorse for statistical inferences. Both quasi-

randomization approach and super-population modeling rely on such device probabilities to operate, as 

shown in Wu (2022) and further discussed in Sections 4-5 below. The lack of design probability can only 

encourage more device probabilities to make headway. To paraphrase Box’s famous quote “all models are 

wrong, but some are useful”, all device probabilities are problematic, but some are problem-solving. 

 

1.3 Let’s reduce “Garbage in, package out” 
 

In a nutshell, probabilistic constructs are more needed for non-probability samples than probability 

ones precisely because of the deprivation of the design probability. Therefore, dealing with non-

probability samples is not a new challenge for statisticians. If anything is new, it is the availability of 

massive amounts of large and non-probabilistic data sets, such as administrative data and social media 

data, and the accelerated need to combine multiple sources of data, most of which inherently are non-

probabilistic because they are not collected for statistical inference purposes (e.g., Lohr and Rao, 2006; 

Meng, 2014; Buelens, Burger and van den Brakel, 2018; Beaumont and Rao, 2021). Contrary to common 
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belief, the large sizes of “big data” can make our inference much worse, because of the “big data paradox” 

(Meng, 2018; Msaouel, 2022) when we fail to take into account the data quality in assessing the errors and 

uncertainties in our analyses; see Section 6.1. 

It is therefore becoming more pressing than ever to greatly increase the general awareness of, and 

literacy about, the critical importance of data quality, and how we can use statistical methods and theories 

to help to reduce the data defect. The central concern here goes beyond the common warning about 

“garbage in, garbage out” ‒ if something is recognized as garbage, it would likely be treated as such 

(likely, but not always, because as Andrew Gelman reminded me that “many researchers have a strong 

belief in procedure rather than measurement, and for these people the most important thing is to follow 

the rules, not to look at where their data came from”). The goal is to prevent “garbage in, package out” 

(Meng, 2021), where low quality data are auto-processed by generic procedures to create a cosmetically 

attractive “AI” package and sold to uninformed consumers or worse, to those who seek “data evidence” to 

mislead or disinform. Properly handling non-probability samples obviously does not resolve all the data 

quality issues, but it goes a very long way in addressing an increasingly common and detrimental problem 

of lack of data quality control in data science. 

I therefore thank Professor Changbao Wu for a well timed and designed in-depth tour of “the must-

sees” of the large sausage-making factory for processing non-probability samples. It adds considerably 

more detailed and nuanced exhibitions to the general tour by Elliott and Valliant (2017), which includes 

excellent illustrations on many forms and shapes of non-probability samples as well as their harms. It also 

showcases theoretical and methodological milestones for us to better appreciate the millstones displayed 

in the intellectual tour by Zhang (2019), which challenges statisticians and data scientists in general to 

understand better the quality, or rather the lack thereof, of the products we produce and promote. 

Together, this trio of overview articles form an informative tour for anyone who wants to join the force to 

address the ever-increasing challenges of non-probability data. Perhaps the best tour sequence starts with 

Elliott and Valliant (2017) to form a general picture, with Wu (2022)’s as the main exhibition of 

methodologies, and ends with Zhang (2019) to generate deep reflections on some specific challenges. For 

additional common methods for dealing with non-probability samples, such as multilevel modeling and 

poststratification, readers are referred to Gelman (2007), Wang, Rothschild, Goel and Gelman (2015) and 

Liu, Gelman and Chen (2021). 

As a researcher and educator, I have been beating similar drums but often frustrated by the lack of time 

or energy to engage deeply. I am therefore particularly grateful to Editor Jean-François Beaumont for 

inviting me to help to ensure Professor Wu’s messages are loud and clear: data cannot be processed as if 

they were representative unless the observed data are genuinely probability samples (which is extremely 

rare); many remedies have been proposed and tried, but many more need to be developed and evaluated. 

Among them, the concept of data defect correlation is a promising general metric to be explored and 

expanded, as demonstrated below. 
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2. A finite-population deterministic identity for actual error 
 

To demonstrate the fruitfulness of the finite-population framework, consider the estimation of the 

population mean, denoted by ,G  of { ( ) : },i iG G X i= N  where {1, , }N=N  indexes a finite 

population, and the ’siX  are data collected on individual .i  For each ,i  let 1iR =  if iG  (or rather )iX  is 

recorded in our sample, and 0iR =  otherwise; hence the sample size is 
=1

.
N

R ii
n R=  We stress that this 

is an all-encompassing indicator, which can (and should) be decomposed into 
(1) ( ), , ,J

i i iR r r=  when 

the data collection consists of J  stages (e.g., 
(1)

ir  indicates whether or not the thi  individual is sampled, 

and 
(2)

ir  whether the individual responded or not once sampled). 

Let { , }iW i S  be a set of weights to be determined, where the index set { : 1},iS i R= =  such that 

0.ii S
W


  Let WG  be the weighted sample average, expressible in three ways: 

 
=1

=1

E ( )
,

E ( )

N

i i i i ii S i I I I
W N

i I Ii S i ii

W G RW G R G
G

W RRW





= = =
 

 
 (2.1) 

where ,I I IR R W=  and E I
 is taken with respect to the uniform distribution over the index set .N  The 

first expression in (2.1) simply defines a weighted sample average. With the help of ,iR  the second 

expression turns the sample averages into finite-population averages. This trivial re-expression is 

fundamental because it explicates the role of iR  in influencing the behavior of WG  as an estimator of .G  

The third expression reveals a divine probability through ,I  the finite-population index (FPI) variable, by 

utilizing the fact that averaging is the same as taking expectation over a uniformly distributed random 

index .I  All finite-population moments then can be expressed via E .I
 

In particular, we can express the actual error of WG  via the following identity, where the first 

expression can be traced back to Hartley and Ross (1954), who used it to express biases in ratio 

estimators. The second expression was given in Meng (2018) with a slightly different (but equivalent) 

expression:   

 
,

Cov ( , )
.

E [ ]

WI I I
W GR G

I I W

N nR G
G G

R n
 

−
− = =    (2.2) 

Here 
,

Corr ( , )I I IR G
R G =  is the finite-population correlation between IR  and ,IG  

2

G  is the finite-

population variance of ,IG  and 
Wn  is the effective sample size due to using weights (Kish, 1965) 

 
2

,
1 CV

R
W

W

n
n =

+
 (2.3) 

with CVW
 being the coefficient of variation (i.e., standard deviation/mean) of { , }.iW i S  

The expression (2.2) is an algebraic identity because it holds for any instances of 

 ( , ), .i i iG RW iN  Hence no model assumptions are imposed, not even the assumption that R  (or any 

quantity) is random, echoing the comment by Mary Thompson, as quoted in Wu (2022), that “the sample 
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inclusion indicator R  is a random variable is itself an assumption”. The only requirement is that the 

recorded iG  is unchanged from the ’siG  in the target population. (But note this requirement has two 

components: (1) there is no over-coverage, that is, everyone in the sample belongs to the target population, 

e.g., no non-eligible voters are surveyed when the target population is eligible voters, and (2) there is no 

measurement error; extensions to the cases with measurement errors are available, but not pursued in this 

article.) When we use equal weights, the three factors on the right-hand side of (2.2) reflect respectively 

(from left to right) data defect, data sparsity, and problem difficulty, as detailed in Meng (2018) and 

further illustrated in Bradley, Kuriwaki, Isakov, Sejdinovic, Meng and Flaxman (2021) in the context of 

COVID-19 vaccination surveys. 

In particular, when all weights are equal, 
,R G

  is termed as data defect correlation (ddc) in Meng 

(2018) because it measures the lack of representativeness of the sample via capturing the dependence of 

inclusion/recording indicator on the attributes ‒ the higher the dependence, the more biased the sample 

average becomes for estimating population averages. With the basic strategies of probabilistic sampling or 

inverse probability weighting, ddc will be zero on average because E( ) 1,i iW R =  and it is of 
1 2( )pO N −

 

order because it is essentially an average of N  independent terms (Meng, 2018). Our general goal here 

therefore is to bring down ddc to 
1 2( )pO N −

 for non-probability samples, which we shall refer to as 

“miniaturizing ddc” because 1 2N −  is typically a minuscule number in practice. 

When we use weights, the first term 
,R G

  captures the data defect that still exists after the weighting 

adjustment, since no weights are perfect in practice. Identity (2.2) shows the impact of the weights on both 

data quality and data quantity. The impact on the nominal effective sample size 
Wn  is never positive 

because 
W Rn n  as seen in (2.3). Incidentally, the exactness of (2.3) reveals that this well-known 

expression is in fact not an approximation (which is often attributed to Kish (1965)), but an exact formula 

for the reduction of the sample size due to weighting if the weighting had no impact on ddc. However, 

weighting can have a major positive impact on reducing the overall error by judiciously choosing weights 

to significantly decrease ddc, though apparently at the price of .W Rn n  Of course, this is exactly the aim 

of the quasi-randomization framework, as discussed below. Most importantly, however, (2.2) leads to a 

unified insight about the variety of methods reviewed in Wu (2022), including an intuitive explanation of 

the doubly robust property, which has been receiving increased attention for integrating data sources 

including both probability and non-probability samples (e.g., Yang, Kim and Song, 2020). 

Indeed, Zhang (2019, Section 3.1) used the first expression in (2.2) to define a unified non-parametric 

asymptotic (NPA) non-informativeness assumption, which requires that the numerator Cov ( , )I I IR G  

goes to zero, while keeping the denominator E [ ]I IR  positive, as .N →  This unification permits 

Zhang (2019) to evaluate the quasi-randomization approach and regression modeling via a common 

criterion. The ddc framework echoes this unification, as discussed in Section 3 below, with Section 4 

stressing the same broad message as emphasized by Zhang (2019). Section 5 harvests another low-

hanging fruit of the ddc formulation, since it provides an immediate explanation of the celebrated double 

robustness. Section 6 then ventures into a much harder area of engineering a more representative 
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sub-sample out of a large non-representative sample, a worthwhile trade-off because data quality is far 

more important than data quantity (Meng, 2018), as briefly reviewed below. 

 
3. A unifying strategy based on data defect correlation 
 

In the setup of Wu (2022), for each individual ,i  we have a set of attributes { , },i i iA y= x  where y  is 

the attribute of interest, and x  is auxiliary, which is useful in two ways. First, reducing the sampling bias 

due to non-probability sampling becomes possible when the non-probability mechanism can be (fully) 

explained by .x  Second, by taking advantage of the relationships between iy  and ,ix  we can improve the 

efficiency of our estimation. As a starting point, Wu (2022) assumes that we have two data sources 

available, which we denote via two recording indicators, R  and 
*.R  The main source of the data is a non-

probability sample, where we observe both iy  and xi  for { : 1},ii S i R  =  but the recording indicator 

iR  is determined by a mechanism uncontrolled by any (known) design probability. A second source is 

(assumed to be) a probability sample, where we observe xi  only, for 
* *{ : 1}.ii S i R  =  This second 

sample provides information to estimate population auxiliary information that is useful for estimating 

population quantities about ,y  such as its mean. Hence this setup is closely related to the setup where 
* ;S S =N  see Tan (2013). 

Now for any function ( ),m x  let ( ), .i iz y m i= − x N  Clearly we can estimate the population 

mean E ( )N I Iy y=  via estimating E ( )I Iz z=  and  E ( ) .I Im m= x  From the second sample, m  can 

be estimated unbiasedly since it involves x  only. We therefore can focus on estimating ,z  while 

recognizing that a more principled approach is to set up a likelihood or Bayesian model to estimate all 

unknown quantities jointly (Pfeffermann, 2017). Applying identity (2.2) with G z=  then tells us that our 

central task is to choose the weight { , }iW i S  and/or the m  function to miniaturize the ddc 
,

.
R z

  For 

our current discussion, it is easier to explain everything via the covariance   

 
,

1

1
Cov ( , ) Cov ( , ( )) ( )

N

I I I I I I I I i i iR z
i

c R z W R y m W R z z
N =

 = − = −x  (3.1) 

instead of the correlation 
,R z

  because Cov ( , )I I IR z  is a bi-linear function in 
IR  and .Iz  However, 

,
,

R z
  being standardized, is more appealing theoretically and for modelling purposes; see Sections 6 

and 7. 

The expression in (3.1) tells us immediately how to make it zero in expectations operationally, and in 

what sense conceptually. For whatever probability we impose on iR  (to be specified in late sections), let 

Pr ( 1 ),i iR = = A  which we assume will depend on iA  only. Then the linearity of the covariance 

operator implies that the average covariance with respect to the randomness in iR  is given by 

 ( )
,

E[ ] Cov , ( ) ,I I I I IR z
c W y m= −A x  (3.2) 
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where { , }.iA i= A N  Similarly, if one is willing to posit a joint model for  ( , ),i iR y iN  

conditioning on X  in the independence form ( )1 , ,N

i i i iP R y= x  then 

 ( ),
E[ ] Cov ,E ( ) ( ) .I I I I I IR z

c W y m= −X x x  (3.3) 

Very intuitively, one can ensure a zero covariance or correlation between two variables by making 

either of them a constant. The two choices then would lead to respectively the quasi-randomization 

approach by making 1I IW    and the super-population approach by making E[ ] ( )x xI I Iy m−  a 

constant (e.g., zero). The fact that either one is sufficient to render zero covariance (under the joint model) 

yields the double robustness, because it does not matter which one. But clearly these are not the only 

methods to achieve a zero correlation/covariance or double robustness, an emphasis of Kang and Schafer 

(2007) in their attempt to demystify the doubly robust approach (Robins, Rotnitzky and Zhao, 1994; 

Robins, 2000; Scharfstein, Rotnitzky and Robins, 1999). See also Tan (2007, 2010) for discussions and 

comparisons of an array of estimators, including those corresponding to only the quasi-randomization 

approach or only the super-population approach, some of them are doubly robust. 

Indeed, because formula (2.2) is an identity for the actual error, any asymptotically unbiased (linear) 

estimators of the population mean must imply its corresponding ddc is asymptotically unbiased for zero, 

and vice versa, with respect to the randomness in R  or in { , }.R y  However, it is possible for ddc to be 

asymptotically unbiased for zero, without assuming any model is correctly specified – see Section 5 for an 

example. (This “double-plus robustness” is different from the “multiple robustness” of Han and Wang 

(2013), which still needs to assume the validity of at least one of the posited multiple models.) These two 

observations suggest that any general sufficient and necessary strategy for ensuring asymptotically 

consistent/unbiased (linear) estimators for the population mean would be equivalent to miniaturizing ddc. 

As an example of a unified insight that otherwise might not be as intuitive, expression (3.2) suggests 

that we should include our estimate of 
I  as a part of the predictor in the regression model ( ),Im x  since 

that can help to reduce the correlation between 
I IW   and ( ),I I Iz y m= − x  especially when we use 

constant weights .IW  Using ˆ
I  as a predictor for y  is generally hard to motivate purely from the 

regression perspective, especially when we assume y  and R  are independent given x  (typically a 

necessary condition to proceed, as discussed in the next section). However, expression (3.2) tells us that 

for the purpose of estimating the mean of ,y  it is not absolutely necessary to fit the correct regression 

model ( ).m x  Rather, it is sufficient to ensure the “residual” 
Iz  is as uncorrelated with 

I IW   as I  varies. 

However, it is critically important to recognize that it is not sufficient to ensure zero or small correlation 

only among the observed data, because Cov ( , 1)I I I I IW z R =  tells us little about 

Cov ( , 0).I I I I IW z R =  In the setting of Wu (2022), our ability to extrapolate from 1IR =  to 0IR =  

depends on the availability of the (independent) auxiliary data indexed by 
* 1,IR =  which allow us to 

observe some ’sIx  for which 0.IR =  

The strategy of including propensity estimates as a predictor has been found beneficial in related 

literature. For example, Little and An (2004) included the logit of ̂  in their imputation model, and 
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reported the inclusion enhanced the robustness of the imputed mean to the misspecification of the 

imputation model. The method was further developed and enhanced by Zhang and Little (2009) and by 

Tan, Flannagan and Elliott (2019), who used the term “Robust-squared” to emphasize the enhanced 

robustness. In a more recent article on such a strategy for non-probability samples, Liu et al. (2021) 

emphasized the importance of including the estimated propensity ˆ
i  “as a predictor” in ˆ( , )m x   (using 

notation in this article). Furthermore, in the literature of targeted maximum likelihood estimation (TMLE) 

for semi-parametric models for dealing with non-probability data (van der Laan and Rubin, 2006; Luque-

Fernandez, Schomaker, Rachet and Schnitzer, 2018) (also see Scharfstein et al. (1999); Tan (2010)), the 

variables ˆ
I IR   and ˆ(1 ) (1 )I IR − −  are called clever covariates and are used in the regression 

models for .Iy  The implementations and theories of TMLE, and the related Collaborative TMLE 

(van der Laan and Gruber, 2009, 2010), are mathematically more involved than those under finite-

population settings as discussed below, but the insights gained from (3.2)-(3.3) can provide us with 

helpful intuitions on understanding the essence of such methods. 

 
4. Quasi-randomization or super-population implementations 
 

In a nutshell, the quasi-randomization approach focuses on making 
I IW   a constant variable (induced 

by FPI ).I  When our sample is genuinely selected by a probabilistic scheme by design, then 

Pr ( 1 ),i i iR = = x  for ,iN  is a design probability, free of ,iy  but it can depend on xi  for example 

when xi  includes a stratifying variable. When the design probability is unavailable, we first need to 

invoke a divine probability. This could be a natural one given by the finite population, such as the 

propensity Pr ( 1 )i I I I iR A A = = =  induced by FPI, where { , },i i iA y= x  or an imagined super-

population one such as the ’siR  being generated independently from Ber ( ),i  where 

Pr ( 1 ) 0.i i iR A = =   This positivity assumption is necessary if the finite population is pre-specified, 

or its imposition defines the finite population that can be studied. (This is a practically rather relevant 

consideration, such as in election polling, where the finite population may not be always pre-specified 

even theoretically.) Since these divine probabilities are unknown and serve as our estimand, we need to 

assume some device probabilities, such as via a generalized linear model ( , )xi i ig y =  to proceed, even 

though we don’t really believe in any particular choice of .g  

For our current discussion, suppose our divine probability is given by the super-population Bernoulli 

model. Let 
=1

,
N

R ii
n R=  and ( ) Pr ( 0 ) 1 (1 ),R i N ip n =  = − −A A  where { , }.iA i= A N  

Because the iR  here is controlled by a divine probability, the sample size 
Rn  is no longer a design 

variable to be conditioned upon in our replication scheme; it is generally no longer an ancillary statistic. 

Nevertheless, we should condition on 0,Rn   a universal requirement for constructing data-driven 

estimates for .G  Fortunately this conditioning does not create mathematical complications to the 

simplicity granted by the independence among ,i i N  as functions of .iA  This is because 

( ) Pr ( 1 , 0) ( ) ,i i R iR n p  =  =A A A  but the normalizing constant ( )Ap  ‒ which depends on 
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the entire A  ‒ is not relevant for the developments in this article, such as assigning weights that are 

proportional to 
1( ).i

−
A  

Consequently, under this divine probability, which corresponds to (the true model for) the q -model 

setting in Wu (2022), we have for any chosen ,IW  by (3.1) 

 
,

1

E ( , 0) = Cov ( E[ , 0], ( ))

( ) Cov ( , ( )),

R I I I R I IR z

I I I I I

c n W R n y m

p W y m−

  −

= −

A A x

A x
 

(4.1)
 

where E  is with respect to the (unknown) divine probability over 
IR  (for fixed ).I  It follows then that, 

regardless of whether we want to ensure zero expectation in (3.2) or in (4.1), we will impose 1,I IW    

that is, 
1,I IW  −  the well-known inverse probability weighting. Therefore, if our postulated model q  

permits us to reliably capture i  in reality, then 
1 2

,
( )pR z

c O N −=  because it has mean zero (with respect 

to the divine probability), and it is a weighted average of N  essentially independent Bernoulli variables, 

as seen in (3.1). 

This is a randomization oriented approach because it treats the entire finite population attribute values 

A  as fixed, and the hypothetical replications are generated only by repeated realizations of the recording 

indicator .IR  Of course, in general, the values of { , }i i N  are unknown, and worse they are 

inestimable from a non-probability sample without further assumptions. To proceed, we pose assumptions 

such as missing at random, i.e., Pr ( 1 ) Pr ( 1 ),i i i iR A R= = = x  and the requirement of an auxiliary 

sample so that we have some values of xi  with 0.iR =  We also have choices on how to estimate the 

inclusion propensity Pr ( =1 ),i i iR = x  parametrically or non-parametrically. These assumptions, 

requirements, and estimation methods are all essential for practical implementation, as carefully reviewed 

and discussed by Wu (2022); also see Tan (2010) for a detailed comparison of various estimation 

strategies. Nevertheless, the overarching idea of quasi-randomization methods is to choose 
IW  to free 

I I IR W R=  from I  in expectation over the posited hypothetical replications, to regain the freedom 

guaranteed by probability sampling. 

Complementarily, the super-population approaches aim to miniaturize 
,R z

c  via making the other 

variable in 
,

,
R z

c  that is, 
Iz  free of I  in expectation, but over a different hypothetical replication scheme. 

Here the idea is to choose an ( )xim  that is a good approximation to iy  such that the residual 

( )xi i iz y m= −  will be zero in expectation conditioning on .x  Typically, this is done by considering a 

joint model for { , }i iR y  given ,ix  and with a specific regression model ( ),y x  using the notation in 

Wu (2022). It is important to recognize that, although we only specify the regression model iy  given ,ix  

we must include iR  in the replications in order to capture the possible dependence of iR  on the entire 

{ , },i i iA y= x  which is the key concern for non-probability samples. Indeed, it is this joint specification 

that permits the adoption of the missing at random assumption to reduce ( , ) ( ),i i i i iP y R P y=x x  

which in turn permits us to focus on specifying a single regression model ( )xi iy  for both observed 

and unobserved individuals. Therefore, when we write E ,  we mean the expectation with respect to   
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 1
( , ) ( ) ( , ) (1 ) ( ),i iR R

i i i i i i i i i i i iP R y P R P y R y  −
= = −x x x x  (4.2) 

where Pr ( 1 )xi i iR = =  is left unspecified, unlike with the quasi-randomization approach. 

It follows then that, conditioning on { , }X xi i= N  and 0,Rn   which does not alter ( )XP y  

because y  and R  are independent given ,X  we have 

 
1

,
E( , 0) [ ( )] Cov ( , E[ ] ( )).R I I I I I IR z

c n p W y m− = −X X x x  (4.3) 

Clearly, (4.3) becomes zero when we choose ( ) E [ ]x xI I Im y=  and that the   model is (first-order) 

correctly specified, that is, E [ ] E[ ].I I I Iy y =x x  This summarizes the super-population approach, and 

it renders 
1 2

,
( )pR z

c O N −=  for similar reasons as given for the quasi-randomization framework. 

 
5. Quasi-randomization and super-population implementations 
 

Once a joint model for { , }i iR y  is set up, of course we can use it for estimating both i  and the 

regression function ( ),m x  each of which is made possible by the availability of the auxiliary probability 

sample, and the assumption of missing at random. But as shown before, correctly specifying and 

estimating one of them is sufficient for miniaturizing 
,

.
R z

c  However, from (4.3), in order for the 

covariance/correlation to be zero, neither multiplicative correction to 
I  via 

IW  nor the additive 

adjustment for E( )xI Iy  via ( )xIm  need to be correct. All we need is that, after the correction or 

adjustment, what is left would be uncorrelated with each other. The aforementioned framework of 

Collaborative TMLE was built essentially on this insight (e.g., see Section 3.1 of van der Laan and 

Gruber, 2009), though the heavy mathematical treatments in its literature might have discouraged readers 

to seek such intuitive understanding.  

To provide a simple illustration, consider a finite population that is an i.i.d. sample from a super-

population model:  

 
3

0

E[ ] , ~ (0,1).k

k

k

y x x x N
=

=   (5.1) 

The non-probability sample is generated by a mechanism R  such that ( ) ( )Pr 1 , ,R y x x= =  that is, 

it is determined by the magnitude of x  only. Suppose we mis-specify the function form for   (e.g., the 

divine model may not be monotone in ,x  but the device model such as the conventional logistic link is), 

as well the regression model by choosing 
2

0 1 2( ) .m x b b x b x= + +  Since 2x  is uncorrelated with x  or 
3x  under ~ (0,1),x N  we know that our least-square estimator for 2b  would still be valid for 2  even 

under the mis-specified regression model. This turns out to be sufficient to ensure the asymptotic 

unbiasedness (as )N →  of the following “doubly robust” estimator for ,Ny =  the finite-population 

mean,  
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( )

( )

*

1 1

*

1 =1

ˆ ˆ( ( )) ( )
ˆ ,

N N

i i i i i ii i

N N

i i ii i

R w x y m x R m x

R w x R


= =

+

=

−
= +
 

 
 (5.2) 

where 
*R  indicates the auxiliary sample (of x  only). Or equivalently,  

 
( ) ( )( )

( )( )
( )( )

( )

*

*

ˆCov , ˆCov ,
ˆ ,

EE

I I I I I I I I

N

I II I I

R w x y m x R m x
y

RR w x
+

−
− = +  (5.3) 

which makes it clearer that any bias in ̂+  is controlled by the covariance (or correlation) involving ,R  

since the covariance involving 
*R  is already miniaturized by the assumption that the auxiliary sample is 

probabilistic (which, for simplicity, is assumed to be a simple random sample). 

Here ( )w x  is any weight function such that ( )
3

E ,x w x
      where the expectation is with 

respect to ~ (0,1),x N  and 
2

0 1 2
ˆˆ ( ) ,m x b b x x= + +  with 2̂  being the least-square estimator for 2  

from the biased sample, and 0b  and 1b  can be chosen arbitrarily. Because the finite-population 

covariance/correlation between ( ) ( )I Ix w x  and 
k

Ix  is 
1 2( ),pO N −

 for 1k =  and 3,k =  the 

misfitted parts for   or m  do not contribute to the ddc (asymptotically) since they are uncorrelated with 

each other under the super-population model, leading to further robustness going beyond “double 

robustness”. This of course does not mean that we can misfit a model arbitrarily and still obtain valid 

estimators, but it does imply that having at least one model being correct is a sufficient, but not necessary, 

condition for the validity of the doubly robust estimators. 

It is also worth stressing that, in formatting the regression model, we do not necessarily need to invoke 

a device probability, e.g., a super-population regression model, because the FPI variable provides a finite-

population regression via applying the least-squares method to regress iy  on , .i ix N  This regression 

fitting itself says little about whether the resulting regression line ˆ ( )xy m=  is a good fit to ( , )xi iy  or 

not. However, the example above indicates that, for the purpose of estimating the population average of 

,y  the lack of fit may not matter that much, as long as the “residual” ˆ ( )xI I Iz y m= −  has little 

correlation with ,I IW   as two functions of the FPI variable .I  Indeed, as discussed in Section 3, we can 

consider including ˆ
I  in the regression model ˆ ˆ( , ).I Im x  How effective this strategy is in general is a 

topic of further research. 

 
6. Counterbalancing sub-sampling 

 
6.1 The devastating impact of data defect on effective sample size 
 

A key finding, which has surprised many, from studying the data quality issue is how small the size of 

our “big data” is when we take into account the data defect. To prove this mathematically, we can equate 

the mean-squared error (MSE) of WG  in (2.1), with the MSE of a simple random sampling estimator of 

size 
eff .n  This yields (see Meng (2018) for derivation):  
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 eff 2 2

, ,

1 1
,

1 E[ ] 1

W W

W WR G R G

f f
n

f f 
 

− −
 (6.1) 

where W Wf n N=  and the expectation E  is with respect to the conditional distribution of R  given .Wn  

It is worthwhile to note that this (conditional) distribution can involve all three types of probability 

discussed in Section 1.2 because the variations in R  can come from multiple sources. For example, in 

typical opinion surveys, there will be (1) design probability in the sampling indicator, (2) divine 

probability in formulating the non-response mechanism, and (3) device probability for estimating the 

mechanism and the weights. 

Expression (6.1) is the weighted version/extension of the expression given in Meng (2018) with equal 

weights, which reveals the devastating impact of a seemingly tiny ddc. Suppose our sample is 1% of the 

population, and it suffers from a half-percent ddc. Applying (6.1) (with equal weights) with Wf = 0.01 

and 
,R G

 = 0.005 yields 
effn  404 regardless of the sample size .Rn  In the case of the 2020 US 

presidential election, 1% of the voting population is about 1.55 million people, and hence the loss of 

sample size due to a half percent ddc is about 1 - (404 / 1,550,000) > 99.97%. Such seemingly impossible 

losses have been reported in both election studies (Meng, 2018) and COVID vaccination studies (Bradley 

et al., 2021). A most devastating consequence of such losses is the “big data paradox”: the larger the 

(apparent) data size, the surer we fool ourselves because our false confidence (in both technical and literal 

sense) goes up with the erroneous data size, while the actual coverage probability of the incorrectly 

constructed confidence intervals become vanishingly small (Meng, 2018; Msaouel, 2022). 

A positive implication from this revelation, however, is that we can trade much data quantity for data 

quality, and still end up having statistically more accurate estimates. Of course, in order to reduce the bias, 

we will need some information about it. If we have reliable information on the value of ddc, we can 

directly adjust for the bias in estimating the population average corresponding to the ddc, for example by a 

Bayesian approach, similar to that taken by Isakov and Kuriwaki (2020) in their scenario analysis. 

Furthermore, if we have sufficient information to construct reliable weights, we can use the weights to 

adjust for selection biases as commonly done. Nevertheless, even in such cases, it may still be useful to 

create a representative miniature of the population out of a biased sample for general purposes, which for 

example can eliminate many practitioners’ anxiety and potential mistakes for not knowing how to 

properly use the weights. Indeed, few really know how to deal with weights, because “Survey weighting is 

a mess” (Gelman, 2007). 

However, creating a representative miniature out of a biased sample in general is a challenging task, 

especially because ddc can (and will) vary with the variable of interest. Nevertheless, just as weighting is 

popular tool despite it being far from perfect, let us explore representative miniaturization and see how far 

we can push the idea. The following example therefore is purely for brainstorming purposes, by looking 

into a common but challenging scenario, where we have reasonable information or understanding on the 

direction of the bias, that is, the sign of the ddc, but rather vague information about its magnitude. A good 

example is non-representativeness of election polls because voters tend to not want to disclose their 
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preferences when they plan to vote for a socially unpopular candidate; we therefore know the direction of 

the bias, but not much about its degree other than some rough guesses (e.g., a range of 10 percentage 

points). 

 
6.2 Creating a less biased sub-sample 
 

The basic idea is to use such partial information about the selection bias to design a biased sub-

sampling scheme to counterbalance the bias in the original sample, such that the resulting sub-samples 

have a high likelihood to be less biased than the original sample from our target population. That is, we 

create a sub-sampling indicator ,IS  such that with high likelihood, the correlation between 
I IS R  and 

IG  

is reduced, compared to the original , ,R G  to such a degree that it will compensate for the loss of sample 

size and hence reduce the MSE of our estimator (e.g., the sample average). We say with high likelihood, in 

its non-technical meaning, because without full information on the response/recording mechanism, we can 

never guarantee such a counterbalance sub-sampling (CBS) would always do better. However, with 

judicious execution, we can reduce the likelihood of making serious mistakes. 

To illustrate, consider the case where y  is binary. Let 1 0 ,r r = −  where yr  is the propensity of 

responding/reporting for individuals whose responses will take value :y  Pr ( 1 ).y I I Ir R y y= = =  If the 

sample is representative, then like , ,R G    is miniaturized, meaning that it is on the order of 1 2.N −  This 

is most clearly seen via the easily verifiable identity (see (4.1) of Meng, 2018) 

 
,

Cov ( , ) (1 )
= ,

(1 ) (1 )

I I I R R
R y

y R f f

p p p p


−
 =

− −
 (6.2) 

where Pr ( 1)I Ip y= =  and Pr ( 1),R I If R= =  which is the original sampling rate. A key ingredient of 

CBS is to determine = ( 1 , 1)y I I I Is P S y y R= = =  for 0,1,y =  that is, the sub-sampling probabilities 

of individuals who reported 1y =  and 0,y =  respectively. 

To determine the beneficial choices, let Pr ( 1 1)S I I If S R= = =  be the sub-sampling rate, and 

1 1 0 0.S s r s r = −  Then by applying (2.2) (with equal weights) and (6.2) to both the sample average and 

the sub-sample average, we see that the sub-sample average has smaller (actual) error in magnitude if and 

only if  

 

2 2 2

2 .S S
S

S R R

f
f f f

      
       

   
 (6.3) 

Writing 1 0r r r=  and 1 0 ,s s s=  the right-hand side of (6.3) becomes  

 

2
2

* * 1
(1 ) ,

1

rs
sp p

r

 −
 + −    

− 
 (6.4) 
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where 
* Pr ( 1 1)I I Ip y R= = =  is observed in the original sample, which should remind us that 

*p  may 

be rather different from the p  we seek, because of the biased R -mechanism. 

An immediate choice to satisfy (6.4) is to set 1,s r−=  which of course typically is unrealistic because 

if we know the value of ,r  then the problem would be a lot simpler. To explore how much leeway we 

have in deviating from this ideal choice, let 1,r = −  we can then show that (6.4) is equivalent to  

  *( 1) [1 (1 ) ] ( 1) 2 0.s p s − + + − +   (6.5) 

This tells precisely the permissible choices of s  without over-correcting (in the magnitude of the resulting 

bias):   

(i)  When 1,r   i.e., 0,   we can take any s  such that  

 
*

*

[1 (1 ) ]
1;

1 (1 )

p
s

p




+− −
 

+ +
 (6.6) 

(ii)  When 1,r   i.e., 0,   we can take any s  such that  

 

*

*

1 (1 )
1 .

[1 (1 ) ]

p
s

p



 +

− −
 

+ +
 (6.7) 

This pair of results confirms a number of our intuitions, but also offers some qualifications that are not 

so obvious. Since we sub-sample to compensate for the bias in the original sample, s  and r  must stay on 

the opposite side of 1, i.e., ( 1) ( 1) ( 1) 0,s r s − − = −   as seen in (6.6)-(6.7). To prevent over 

corrections, some limits are needed, but it is also possible that the initial bias is so bad that no sub-

sampling scheme can make things worse, which is reflected by the positivizing function [ ]x +  in the two 

expressions above. However, the expressions for the limits as well as for the thresholds to activate the 

positivizing functions are not so obvious. Nor is it obvious that these expressions depend on the unknown 

p  indirectly via the observed 
*,p  and hence only prior knowledge of r  is required for implementing or 

assessing CBS. 

This observation suggests that it is possible to implement a beneficial CBS when we can borrow 

information from other surveys (or studies) where the response/recording behaviors are of similar nature. 

For example, we may learn that a previous similar survey had r = 1.5 (e.g., those with 1y =  had 6% of 

chance to be recorded, and those with 0y =  had only 4% chance). Taking into account the uncertainty in 

the similarity between the two surveys, we might feel comfortable to place (1.2, 1.8) as the plausible range 

for r  in the current study. Suppose we observe 
*p = 0.6, this means that the maximum ‒ over the range 

r (1.2, 1.8) ‒ of the lower bound on the permissible s  as given in (6.6) is 

 
[1 (1 0.6) ( 1)] [1.4 0.4 ] 1.4 0.4 1.2

= 0.7.
1 1.6( 1) 1.6 0.6 1.6 1.2 0.6

r r

r r

+ +− − − − − 
= 

+ − −  −
 (6.8) 
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Therefore, as long as we choose [0.7,1),s  we are unlikely to over-correct. The price we pay for this 

robustness is that the resulting sub-sample is not as good quality as it can be, for example, when the 

underlying r  for the current study is indeed 1.5 (in expectation). Choosing any [0.7,1)s  will not 

provide the full correction as provided by 1s r= = 0.67, that is, the sub-sample average will still have a 

positive bias but with a smaller MSE compared to the original sample average. Of course both the 

feasibility and effectiveness of such CBS need to be carefully investigated before it can be recommended 

for general consumption, especially going beyond binary .y  The literature on inverse sampling (Hinkins, 

Oh and Scheuren, 1997; Rao, Scott and Benhin, 2003) is of great relevance for such investigations, 

because it also aims to produce simple random samples via subsampling, albeit with a different motivation 

(to turn complex surveys into simple ones for ease of analysis). 

 
7. Probability sampling as aspiration, not prescription 
 

As it should be clear from the definition of ddc, it is not directly estimable from the biased sample 

alone. One therefore naturally would (and should) question how useful ddc is or could be. The answer 

turns out to be an increasingly long one thanks to ddc being model-free and hence a versatile data quality 

metric for both probability samples and non-probability samples. Its usefulness for generating theoretical 

insights is demonstrated by its role in quantifying the data quality-quantify trade-off via effective sample 

size as seen in (6.1), in understanding simulation errors in quasi-Monte Carlo as explored in Hickernell 

(2016), and in anticipating the “double-plus robustness” phenomenon as presented in Section 5. Its 

methodological usages are illustrated by the scenario analyses for the 2020 US Presidential election 

(Isakov and Kuriwaki, 2020) and for the COVID-19 vaccination assessments (Bradley et al., 2021). Its 

practical implications can be found in epidemiological studies (Dempsey, 2020), particle physics 

(Courtoy, Houston, Nadolsky, Xie, Yan and Yuan, 2022), and political polling (Bailey, 2023). 

Not surprisingly, these practical applications found the notion of ddc and the underlying error 

decomposition (2.2) helpful because of the non-probability samples they need to deal with, either due to 

distortions to the probability samples such as by a biased non-response mechanism or due to selection 

biases in the first place such as selective COVID-19 testing. Professor Wu’s overview, and the many 

references cited there and in this discussion, should make it clear that non-probability samples are almost 

surely everywhere. I am invoking this strong probabilistic phrase not merely for its humorous value. When 

we consider the unaccountably many possible values for the mean of ddc, the probability ‒ however we 

construct it to capture the wild west of data collection processes out there ‒ that it will land precisely on 

zero must be zero. This zero mean is a necessary condition for the sample to be a probability sample, 

because a probability sample implies that ddc must be of the order of 1 2N −  order (Meng, 2018), which is 

impossible when its mean is non-zero (asymptotically). This observation suggests that we should move 

away from our tradition of treating probability sampling as a centerpiece and then try to model the much 

larger world of non-probability samples as “deviations” from it. Instead, we should start with studying 

samples with general collection mechanisms using tools or concepts such as ddc, and then treat (design) 
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probability samples as the very special, ideal case ‒ always an aspiration, but never the only prescription 

for action. 
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