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Estimation of response propensities and indicators of 
representative response using population-level information 

Annamaria Bianchi, Natalie Shlomo, Barry Schouten,  
Damião N. Da Silva and Chris Skinner1 

Abstract 

In recent years, there has been a strong interest in indirect measures of nonresponse bias in surveys or other forms 
of data collection. This interest originates from gradually decreasing propensities to respond to surveys parallel 
to pressures on survey budgets. These developments led to a growing focus on the representativeness or balance 
of the responding sample units with respect to relevant auxiliary variables. One example of a measure is the 
representativeness indicator, or R-indicator. The R-indicator is based on the design-weighted sample variation of 
estimated response propensities. It pre-supposes linked auxiliary data. One of the criticisms of the indicator is 
that it cannot be used in settings where auxiliary information is available only at the population level. In this 
paper, we propose a new method for estimating response propensities that does not need auxiliary information 
for non-respondents to the survey and is based on population auxiliary information. These population-based 
response propensities can then be used to develop R-indicators that employ population contingency tables or 
population frequency counts. We discuss the statistical properties of the indicators, and evaluate their 
performance using an evaluation study based on real census data and an application from the Dutch Health 
Survey. 

 
Key Words: Nonresponse; Missing data; Nonresponse bias; Balanced response. 

 
 

1  Introduction 
 

Nonresponse bias in surveys is of increasing concern with declining response rates and tighter budgets. 

National Statistics Institutes (NSIs) charged with conducting national surveys to convey the state of their 

country’s economic, social and demographic characteristics are facing increasing challenges in maintaining 

the quality of their survey response. In this paper, we focus on one particular survey conducted since 1998 

by Statistics Netherlands, The Dutch Health Survey, which up until 2010 was a face-to-face survey. In 2010, 

online data collection was added as a sequential mode before the face-to-face interviews. The response rates 

have gradually declined from values close to 70% to values around 60%. Other NSIs and survey 

organizations have reported declining response rates, particularly when moving to mixed modes of data 

collection in order to reduce budgets, with respondents pushed towards cheaper modes. However, response 

rates alone are not enough to judge the quality of the survey response, as nonresponse bias results from the 

contrast between those responding and not responding to the surveys. Nonresponse bias in the Dutch Health 

Survey is conjectured to arise from persons with weaker health, certain habits like smoking or fewer dentist 

visits, and poorer living conditions. Important predictors are age, marital status, income and ethnicity. 

A number of indirect measures of nonresponse bias have been developed recently to supplement the 

traditional response rate. Wagner (2012) provides a taxonomy of such measures: indicators that include only 

observed auxiliary variables and indicators that also include observed survey variables which may or may 
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not account for nonresponse weighting. The most prominent indicators that only use observed auxiliary 

variables are R-indicators (Schouten, Cobben and Bethlehem, 2009; Schouten, Shlomo and Skinner, 2011) 

and balance indicators (Särndal, 2011; Lundquist and Särndal, 2013).  

The development of these measures comes at a time when there is an increased interest in adapting data 

collection (Schouten, Calinescu and Luiten, 2013; Wagner, 2013; Wagner and Hubbard, 2014; Beaumont, 

Bocci and Haziza, 2014) so that the level of effort targeted at different subgroups as defined by auxiliary 

variables may be varied over time, possibly through a change of strategy, according to patterns of response 

(Schouten, Bethlehem, Beulens, Kleven, Loosveldt, Rutar, Shlomo and Skinner, 2012; Särndal and 

Lundquist, 2014). Both R-indicators and balance indicators must be viewed in conjunction with the auxiliary 

data that is employed. Different auxiliary variables may lead to different values of the indicators.  

In addition, Schouten, Cobben, Lundquist and Wagner (2016) present empirical evidence that it is 

beneficial for samples to be more balanced with respect to auxiliary variables, even when these variables 

are used in nonresponse adjustment afterwards. Based on 14 survey data sets they show that, on average, a 

design with a more representative response has smaller nonresponse biases, even after adjustments on the 

characteristics for which representativeness was evaluated. Särndal and Lundquist (2014) also found gains 

in balancing the respondents set, over and beyond those obtained by calibrating the sample. Further, it is 

worth noting that a more balanced sample leads to less variability in adjustment weights, which is a desirable 

property as large variation in adjustment weights may inflate standard errors of estimates. Of course, 

nonresponse adjustment weighting will still be necessary as there will always be some imbalance remaining 

in the final response dataset.  

The auxiliary data used for the response indicator measures may stem from sampling frame data, 

administrative data and data about the data collection process, called paradata (Kreuter, 2013). Balance 

indicators and R-indicators are very similar and are often proportional in size. In this paper, we focus on R-

indicators. However, much of the discussion and results can easily be translated to balance indicators.  

R-indicators presume the availability of auxiliary variables obtained by linking data from, for example, 

sample frames or registers, to the survey sample. This presumption of linked survey samples may be 

infeasible in many settings and hampers application. While national statistical institutes often have access 

to government registrations, university and market researchers usually do not. For indicators to become 

useful for these researchers, they must be based on different forms of auxiliary information. The only form 

of auxiliary information that is generally accessible are the sets of statistics produced by the national 

statistical institutes. These institutes disseminate tables on a wide range of population statistics. This paper 

develops R-indicators that are based solely on such population statistics and that can be computed without 

any knowledge about the non-respondents. As an example, market research companies compare the 

response distributions of a fixed, prescribed set of auxiliary variables to national statistics, termed the gold 

standard. The R-indicator estimators proposed here allow for monitoring and evaluating gold standard 

variables during and after data collection.  

Although the R-indicators based on population auxiliary information are motivated in this paper from 

survey data collection practice, they can be applied to any setting with missing data on variables of interest 
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and (almost) complete auxiliary data. They can for instance, be used to monitor and evaluate the completion 

of administrative data, which is useful if the data is streamed and gradually accumulated over time. In this 

case, population based R-indicators would provide an assessment of the representativeness of the streamed 

administration data. Another useful application for such indicators is to assess the representativeness of 

linked records. Van der Laan and Bakker (2015) proposed a Linkage Representativeness Indicator (LR-

indicator) which examines the similarity of linked records to the target population under investigation.  

R-indicators and their statistical properties, as discussed in Shlomo, Skinner and Schouten (2012), relate 

to the case where we have linked sample level auxiliary information for non-respondents. To develop R-

indicators based on population statistics, we propose a new method for estimating response propensities that 

does not require auxiliary information for non-respondents to the survey. They will be called population-

based response propensities. To our knowledge, there is no record in the literature about models for response 

propensities that employ population information only. In this respect, the current paper is innovative and 

may be valuable and relevant to other statistical areas as well. In this paper, we concentrate on the use of 

population-based response propensities in the computation of R-indicators. 

With respect to adapting data collection, it is clear that settings where population-based R-indicators are 

needed are harder for the implementation of these types of adaptive designs as we do not know the values 

of the covariates for nonrespondents. However, using these types of R-indicators based on population-based 

auxiliary information, we can make design features more salient to those that are lagging behind in terms of 

response. So, for example, if young people have lower response rates, we can send a general reminder with 

more focus on young persons or alternatively instruct interviewers to monitor more carefully those addresses 

where they expect younger persons. 

The auxiliary information for population-based response propensities is obtained from population tables 

and population counts. In order to do so, we first propose estimating response propensities based on 

population values, by replacing sample covariance matrices and sample means by known population 

covariances and population means. Next, using population-based response propensities, we compute 

estimates for the R-indicator. We call the resulting indicator a population-based R-indicator, and we call the 

traditional R-indicator a sample-based R-indicator. We focus on three research questions:  

 How to extend sample-based response propensities and R-indicators to population-based 

response propensities and R-indicators?  

 What are the statistical properties of population-based R-indicators? 

 Are the population-based R-indicators practicable in real survey settings? 

 

In Section 2, we propose a new method for estimating population-based response propensities. In 

Section 3, we briefly review the definitions and methodology behind R-indicators and then consider their 

estimation in the population-based setting. In Section 4, we present an evaluation study that is based on 

drawing samples from real Census data under realistic assumptions about nonresponse in social surveys and 

evaluate the properties of the population-based R-indicators. In Section 5, we demonstrate the proposed 



220 Bianchi et al.: Estimation of response propensities and indicators of representative response using population-level information 
 

 
Statistics Canada, Catalogue No. 12-001-X 

R-indicators on an application from the Dutch Health Survey of the Netherlands. In Section 6, we end with 

a discussion and present some caveats related to the proposed indicators and future work. 

 
2  Population-based response propensities 
 

2.1  General notation 
 

We suppose that a sample survey is undertaken, where a sample s  is selected from a finite population 

.U  The sizes of s  and U  are denoted by n  and ,N  respectively. The units in U  are labelled 

1, 2, , .i N   The sample is assumed to be drawn by a probability sampling design  . ,p  where the 

sample s  is selected with probability   .p s  The first order inclusion probability of unit i  is denoted i  

and 1
i id    is the design weight. The evaluation study is based on simple random sampling without 

replacement. Although large-scale national surveys may use more complex two-stage designs, many are 

generally planned so that all survey units have an equal inclusion probability. We also provide theoretical 

expressions under more general complex survey designs.  

We suppose that the survey is subject to unit nonresponse. The set of responding units is denoted by ,r  

so .r s U   We denote summation over the respondents, sample and population by ,r s  and ,U  

respectively. Let ir  be the response indicator variable so that 1ir   if unit i  responds and 0,ir   

otherwise. Hence,  ; 1 .ir i s r    We shall suppose that the typical target of inference is a population 

mean 1
iU

Y N y   of a survey variable, taking value iy  for unit .i  

We suppose that the data available for estimation purposes consists first of the values  ;iy i r  of the 

survey variable, observed only for respondents. Secondly, we suppose that information is available on the 

values  1, 2, ,, , ,
T

i i i K ix x xx   of a vector of auxiliary variables .X  We shall usually suppose each ,k ix  

is a binary indicator variable, where ix  represents one or more categorical variables, since this will be the 

case in the applications we consider, but our presentation allows for general ,k ix  values. We assume that 

values of ix  are observed for all respondents so that  , ;i iy x i r  is observed.  

We distinguish two settings: one in which ix  is known for all sample units, i.e., for both respondents 

and non-respondents, and one in which ix  is known only at the aggregate level: the population total iU x  

and/or the population cross-products .T
i iU x x  We refer to the two types of information as sample-based 

auxiliary information and aggregate population-based auxiliary information. The first setting is relevant if 

the variables making up X  are available on a register. However, as outlined in the introduction, in many 

countries and surveys the availability of auxiliary information on non-respondents may be limited and the 

second setting using population-based auxiliary information may be more useful.  

 

2.2  Definition of response propensities 
 

The theory of propensity scores was introduced by Rosenbaum and Rubin (1983) and discussed in the 

context of survey nonresponse by Little (1986; 1988). Response propensities are defined as the conditional 
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expectation of the response indicator variable ir  given the values of specified variables and survey 

conditions:     ,X i m i iE r x x  where the vector of auxiliary variables is defined as in Section 2.1. For 

simplicity, we shall write  i X i  x  and hence denote the response propensity just by .i  .mE  

denotes expectation with respect to the model underlying the response mechanism. A detailed discussion of 

response propensities and their properties is presented in Shlomo et al. (2012). They argue that it is desirable 

to select auxiliary variables constituting ix  in such a way that the missing at random assumption, denoted 

MAR (Little and Rubin, 2002), holds as closely as possible.  

 

2.3  Estimation of response propensities using population-level information 
 

In the case of sample-based auxiliary information, it is possible to estimate response propensities for all 

sampled units by means of regression models   ,T
i ig   x β  where  .g  is a link function, ir  is the 

dependent variable, and ix  is a vector of explanatory variables. Generally, the response propensities are 

modelled by generalized linear models. Shlomo et al. (2012) use a logistic link function.  

In the population-based setting, it is convenient to consider the identity link function. The identity link 

function is a good approximation to the more widely used logistic link function when response rates are 

mid-range, between 30% and 70%, which is the typical response rate obtained in national and other surveys. 

We demonstrate this fact in the evaluation study presented in Section 4 where three ranges of response rates 

are investigated: low, medium and high. The identity link function also forms the basis for other 

representativeness indicators in the literature, such as the imbalance and distance indicators proposed by 

Särndal (2011) some of which are similar to the g-weights calculated in the Generalized Regression 

Estimators (GREG). 

Under the identity link function we assume that the true response propensities satisfy the “linear 

probability model” 

                                                           , .T
i i i U  x β  (2.1) 

The linear probability model in (2.1) can be estimated by weighted least squares, where id  is the design 

weight. The implied estimator of i  is given by 

                 1
OLSˆ , .T T
i i i i i i i is s

d d r i s


  x x x x  (2.2) 

In the case of population-based auxiliary information, we first note that i is
d x  and T

i i is
d x x  are 

unbiased for iU x  and ,T
i iU x x  respectively and that in large samples we may expect that 

i i is U
d  x x  and .T T

i i i i is U
d  x x x x  It follows from (2.2) that, in the population-based setting, 

we may approximate OLSˆ i  by 

                                                        1
, 1 1 ,T

i T i k kr
d i r  x T x  (2.3) 

where 1 .T
j jU

 T x x  We note that , 1i T  is computed only on the set of responding units. 

The estimator in (2.3) requires knowledge of the population sums of squares and cross-products 
T

i iU x x  of the elements of .ix  However the cross-products might be unknown. In that case, we can 

estimate T
i i is

d x x  in (2.2) by rewriting 
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                                             ,TT T
i i i i i s i s s ss s

d d N    x x x x x x x x  (2.4) 

where .s i is
d N x x sx  may be replaced by Ux  and the covariance matrix 

                                                           1 T
xx i i s i ss

N d  S x x x x  (2.5) 

may be replaced by its estimate using the response set 

                                                             
1ˆ .T

xx j j i i i U i Us s
d r d r


   S x x x x  (2.6) 

We can also estimate (2.6) using propensity weighting by 1
i   to adjust for nonresponse bias in the 

variance of the response propensities relative to a set of X  variables.  

Combining (2.3), (2.4) and (2.6), we obtain the following estimator:  

                                                     1
, 2 2

ˆ , ,T
i T i k kr

d i r  x T x  (2.7) 

where 2
ˆˆ .T

xx U UN N T S x x  

We therefore distinguish between two types of aggregated population-based auxiliary information as 

denoted by the indices 1T“ ”  in (2.3) and 2T“ ”  in (2.7):  

TYPE 1 Full aggregate population-based auxiliary information: the population cross products 

are available, i.e., T
i iU x x  or     ,T

i U i UU
  x x x x  where ;U iU

N x x  

TYPE 2 Marginal aggregate population-based auxiliary information: only the population 

marginal counts are available, i.e., .iU x  
 

The first type implies that we have available all two-by-two tables, e.g., age times gender, age times 

marital status and gender times marital status. This information might be available to a national statistical 

institute which has access to population registers or detailed population demographics and wishes to use 

population-based information to monitor data collection due to a lack of sample-based information on the 

sample frames. The second type is more restrictive as we have only frequency counts, e.g., age, gender, 

marital status, without any knowledge about the interactions. This information would be routinely available 

through websites of national statistical institutes and therefore can be used by marketing and other data 

collection agencies to monitor their data collection.  

 
3  Estimation of R-indicators based on population totals 
 

In this section, we first briefly review the definition and concepts of R-indicators, and their estimation 

based on sample-level auxiliary information. Details can be found in Shlomo et al. (2012). Next, applying 

the theory introduced in Section 2.3, we adapt the sample-based R-indicator to the case where auxiliary 

information is obtained from population tables and population counts. Further, we investigate the statistical 

properties of this estimator. 
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3.1  R-indicators 
 

Schouten et al. (2009) introduce the concept of representative response. A response to a survey is said 

to be representative with respect to X  when response propensities are constant for ,X  i.e., 

   , ,i X i i    x x   

where   denotes the average response propensity in the population.  

The overall measure of representative response is the R-indicator. The R-indicator associated with a set 

of population response propensities  :i i U   is defined as 

 1 2 ,R S    (3.1) 

where S   denotes the standard deviation of the individual response propensities  

  
2

22 2
1 1 1

,
1 1i U i iU U U

N
S

N N N N    
             

    (3.2) 

where .U iU
N    

The R-indicator takes values on the interval 11 , 1N
N     with the upper value 1 indicating the most 

representative response, where the ’si  display no variation, and the lower value 11 N
N   (which is close 

to 0 for large surveys) indicating the least representative response, where the ’si  display maximum 

variation.  

An important related measure of representativeness is the coefficient of variation of the response 

propensities 

 CV .
U

S 
 
  (3.3) 

This is a relevant measure when considering population means or totals as parameters of interest. In 

those cases, it may be used instead of the R-indicator. For other types of parameters of interest, such as the 

median or a ratio, other indicators can be used (Brick and Jones, 2008).  

The coefficient of variation in (3.3) bounds the absolute nonresponse bias of unadjusted response means 

for a variable Y  divided by its standard deviation. Schouten et al. (2016) also used the coefficient of 

variation to assess “worst case” nonresponse bias intervals for standard nonresponse adjusted post-survey 

estimators, such as the generalized regression estimator (GREG) (Deville and Särndal, 1992) and inverse 

propensity weighting (IPW) (Little, 1988).  

 

3.2 Sample-based R-indicators 
 

In the case of sample-based auxiliary information, it is possible to estimate response propensities for all 

sampled units. In the following, let ˆ i  be an estimator for .i  The sample-based estimator for the R-

indicator is  
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                                                              ˆ ˆ
ˆˆ 1 2 ,R S    (3.4) 

where 2
ˆŜ   is the design-weighted sample variance of the estimated response propensities computed using 

the first expression in (3.2) 

                                                                2
2
ˆ

1ˆ ˆˆ ,
1 i i Us

S d
N   
    

where  ˆ ˆ .U i is
d N    

The sample-based R-indicator defined by (3.4) is a statistic with a certain precision and bias. Shlomo 

et al. (2012) discuss bias adjustments and confidence intervals for ˆ
ˆ .R  These are available in SAS and R 

code at www.risq-project.eu, and a manual is provided by De Heij, Schouten and Shlomo (2015). We return 

to the statistical properties in Section 3.4. 

 
3.3  Population-based R-indicators 
 

We demonstrate in Section 4 that the R-indicators depend only mildly on the type of link function when 

estimating response propensities if response rates are not in the tails, i.e., very high or very low. Furthermore, 

we obtain similar estimation of R-indicators when population-based response propensities are estimated 

according to the Type 1 or Type 2 types of information.  

In the population-based setting, an estimator for the R-indicator is then 

                                                              1 2 ,R S   
  (3.5) 

where  

                                                              
2

2
1 1

,
1 i i ir r

N
S d d

N N N 
         

 
   (3.6) 

and i  denotes either response propensities computed under Type 1 information  , 1i T  or response 

propensities estimated under Type 2 information  , 2 .i T  

Notice that the estimation of the R-indicator is based on the second expression for 2S   in (3.2). This 

choice indeed makes the estimator 2S 
  linear in ,i  which provides an advantage for bias computations as 

described in Section 3.4. The evaluation study in Section 4 empirically demonstrates that the two 

expressions for 2S   are similar for the types of large-scale national surveys under consideration. 

Furthermore, we use propensity-weighting by 1
i   to adjust for nonresponse bias. As for standard 

nonresponse weighting, the validity of this correction depends on the validity of the estimates .i  

We remark that any adjustment technique for nonresponse can be applied to construct estimators for 

,R  e.g., calibration estimators such as linear or multiplicative weighting (Särndal and Lundström, 2005) 

or weighting class adjustments (Little, 1986). It is generally known that propensity weighting may lead to 

larger standard errors. It may, therefore, be more efficient to use parsimonious models to estimate the 
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R-indicator. For instance, this can be done by stratifying on response propensity classes. However, we did 

not explore such estimators, and restricted ourselves to the propensity-weighted estimator (3.5). This is a 

topic for future research. 

The estimation of the coefficient of variation (3.3) in the population-based setting is straightforward 

 CV ,
U

S 
 
 




   

where .U ir
d N  

 
Despite being straightforward estimators, the population-based R-indicators based on (2.3) and (2.7) are 

problematic. Their standard errors and biases increase with higher response rates. We will demonstrate this 

tendency in the evaluation study in Section 4.2. Clearly, more respondents should provide smaller standard 

errors and reduce bias since the auxiliary variables will not vary as much among the remaining non-

respondents. The reason that (2.3) and (2.7) have these properties is that they are natural but naïve estimators 

that ignore the sampling which causes sample covariances in the denominator of the estimated response 

propensities to vary along with the numerator. By “plugging” in a fixed population covariance in the 

denominator, variation from sampling is avoided.  

One way to moderate this effect would be to use a composite estimator, i.e., to employ a linear 

combination of the estimated propensity and the response rate,  

  , 1 , 11 ,C
i T i T U         (3.7) 

with ,U ir
d N    and similarly for Type 2. The composite estimate in (3.7) is similar to a “shrinkage” 

estimator, e.g., Copas (1983 and 1993), for the variance of the response propensities 2S 
  given by (3.6). In 

that case, the optimal   is usually chosen to minimize the MSE by solving the derivative of the MSE with 

respect to .  We return to the choice of   in Section 3.4 and note here that, given the observed bias and 

variance properties,   should be an increasing function of the response rate and should converge to 1 with 

higher response rates. Estimated response propensities greater than 1 will be drawn closer to 1 by such a   

due to the use of the linear link function under high response rates.  

We explored several other possible alternatives to the composite estimator in (3.7), for example, a 

composite estimator of the population covariance matrix and the response covariance matrix of the ,ix  and 

response propensities truncated to the interval [0, 1] for high response rates, but this gave worse results 

compared to the composite estimator in (3.7). In addition, we also investigated a Hájek-type estimate but 

this gave similar results to those provided by the proposed estimator in (3.6). Another advantage to using 

the composite estimator in (3.7) is that we can easily construct bias adjustments of the R-indicators similar 

to the bias adjustments constructed based on the propensities in (2.3) or (2.7).  

A promising alternative may be to adopt an EM-algorithm approach in which the missing auxiliary 

variables for nonrespondents are imputed. Such an approach is, however, very different in nature and we 

leave this to future research. 
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3.4  Bias and standard error of the population-based R-indicators 
 

Shlomo et al. (2012) derive analytic approximations for the bias and standard errors of the sample-based 

estimate of the R-indicator (3.4). The bias in this estimator arises mostly from “plugging in” estimated 

response propensities in the sample variances. This source of bias is referred to as small sample bias. A 

much smaller and usually negligible contribution to the bias originates from using sample means rather than 

population means. Even if the response is representative, i.e., has equal response propensities, some 

variation in estimated response propensities is found. The bias is inversely proportional to the sample size 

meaning that the larger the sample, the smaller the bias. Schouten et al. (2009) investigate the bias for 

different sample sizes. From their analyses, it follows that the bias is relatively small for typical sample 

sizes used in large-scale surveys in comparison to the standard error of the R-indicators. Also, the bias 

adjustment is successful in removing the bias. 

For the estimated population-based R-indicators, we expect that statistical properties will be quite 

different from their sample-based counterparts. As these estimators use less information, the standard errors 

will be larger. The bias of the population-based estimators may also be larger since in addition to the bias 

that was evident for small sample sizes in the sample-based estimators, the population-based estimators will 

likely have bias arising from the estimation of the sample means and covariances and from the restriction 

to (propensity-weighted) response means.  

To reduce the bias of the population-based estimators, we propose to adjust 
1

2
T

S 
  and 

2

2
T

S 
  for bias. This 

leads to the adjusted version of the estimator for the R-indicator under Type 1 information: 

                                                         
1 1 1 1

1 2
ADJ 2 21 2 .

T T T T
R S B S          

    (3.8) 

Appendix A derives the general expression for  2
1 1T TB S 
  under both simple random sampling and a 

more general expression under complex sampling. From Appendix A, the response-set based estimator for 

the bias under simple random sampling is: 
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(3.9)

 

where rn  denotes the size of the response set .r  

In the case of Type 2 information, the adjusted version of the estimator for the R-indicator is as (3.8) 

with the Type 2 terms replacing the Type 1 information.  

Appendix B derives the general expression for the bias of 
2

2 ,
T

S 
  2

2 2 ,T TB S 
  under simple random 

sampling and the more general case of complex sampling. From Appendix B, the response-set based 

estimator for the bias under simple random sampling is:  
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where 1ˆ ,T
k kr

N n  F z z 1ˆ ,kr
Nn  t x  and   .i i U z x x  

Turning to the composite estimator, it is straightforward to show that (3.7) can be rewritten as 

  
11

2 21 ,C
TT

S S    
   (3.10) 

and its bias equals 

      
11

2 2 21 .C
TT

B S B S S     
   (3.11) 

A response-set based estimator for  
1

2
C
T

B S 
  is obtained using the response-set based estimator developed 

for  
1

2 .
T

B S 
  For the Type 1 estimator and under simple random sampling: 
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(3.12)

 

The same approach applies for Type 2 estimator. 

The variance of (3.10) is equal to 

      
11

22 21 .C
TT

V S V S    
   (3.13) 

To estimate the variance of ADJ
1TR

  in (3.8) as well as the variance of the composite estimator in (3.13) we 

need to estimate the variance of 
1

2
T

S 
  defined in (3.6) and denoted by  

1

2 .
T

V S 
  To estimate this variance 

we use resampling methods. More specifically, we employ bootstrap methods (see: Efron and Tibshirani, 

1993; Booth, Butler and Hall, 1994 and Wolter, 2007 for the use of bootstrapping methods for finite 

populations) and assess their performance in the evaluation study in Section 4. 

We return now to the choice of   for the composite estimator in (3.7). The optimal   can be derived 

by combining (3.11) and (3.13), and then taking derivatives. Letting B  and V  denote  
1

2
T

B S 
  and 

 
1

2 ,
T

V S 
  respectively, it follows that the optimal   is 
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 

 
2

opt 2
2

λ .
B B S V

B S V





 


 
 (3.14) 

We note that as the sample size increases, both the B  and V  terms tend to zero and it is possible that 

opt  might be negative. However, based on the evaluation study for the types of large-scale national surveys 

under consideration, this problem does not arise in practice.  

In order to estimate opt ,  the quantities ,B V  and 2S   need to be estimated. Under Type 1 information 

and simple random sampling, we propose to estimate B  by  
1 1

SRS 2
T T

B S  
  as in (3.9), 2S   by 

1

2 ,
T

S 
  and V  by 

the bootstrap variance estimator of 
1

2 .
T

S 
  This leads to the population-based Type 1 estimator for opt ,  

denoted by opt , 1 ,T  and the population-based composite propensities 

 PC
, 1 opt , 1 , 1 opt , 11 .i T T i T T U           

The corresponding population-based R-indicator is then computed as in (3.5) and its bias-adjusted 

version as in (3.8), where the bias adjustment is given by (3.12).  

We propose to estimate the variance of the population-based composite estimator by linearization 

   
1

1

2
2BT

opt , 1

2

1
,T

T

TV S

S









  

where  
1

2BT
T

V S 
  is the bootstrap variance estimator for  

1

2 .
T

V S 
  

The same approach applies for Type 2 information. 

 
4  Evaluation study 
 

In this section, we carry out an evaluation study on real census data from the 1995 Israel Census Sample 

to assess the sampling properties of the estimation procedures introduced in Section 3. 

The aim of the evaluation is two-fold: a) to study the sampling properties of the unadjusted and bias 

adjusted population-based R-indicators, comparing them to those of their sample-based counterpart and 

assessing the effect of sample size, number of auxiliary variables in the model, and response rate; b) to 

investigate the performance of the bootstrap estimator for estimating the variance of the population-based 

R-indicator.  

 
4.1  Data and design of evaluation study 
 

The 1995 20% Israel Census Sample contains 753,711 individuals aged 15 and over in 322,411 

households. The census sample design is a random systematic sample where every fifth household was 

delivered a long questionnaire covering a range of socio-economic questions. The sample units are 

households and all persons over the age of 15 in the sampled households are interviewed. Typically a proxy 
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questionnaire is used and therefore there is no individual nonresponse within the household. In this study, 

we assume that every household has an equal probability to be included in the sample. This evaluation study 

uses data at the household level  322,411 .N   

We carried out a two-step design to define response propensities in the population (census) data. This 

procedure ensures that we have a known model generating the response propensities. Moreover, in order to 

explore the effect of varying response rates and the number of auxiliary variables in the model on the 

performance of the estimators, we considered six scenarios defined by the level of response rates 

(3 categories) and the type of model (2 categories). 

A. First, probabilities of response were defined according to variables: Type of locality (4 categories 

defined by rural/urban and type of population), number of persons in household grouped to 

3 categories (1-2, 3-5, 6+), children in the household indicator (yes, no), region (7 categories 

dividing the country from north to south), and density (3 categories: less than 1.5, 1.5-3.0, greater 

than 3.0). These variables define groups that are known to have differential response rates for 

social surveys in practice. To study the effect of response rates on the performance of the 

estimators, probabilities of response p  were defined according to 1 2 3 4 5p p p p p p    with 

three choices 0.15   (RR1), 0.55   (RR2), and 0.75   (RR3), where the probabilities 

1 2 3 4 5, , , ,p p p p p  are given in Table 4.1. We generate three response indicator variables using 

the Bernoulli distribution for each of the response scenarios defined under RR1, RR2, and RR3.  

B. For each of the response scenarios from step (A), we use the response indicator as the dependent 

variable and fit both a linear and a logistic regression model to the population to predict “true” 

response propensities for our evaluation study under both link functions. Two different models 

were considered for prediction of “true” response propensities. In Model 1, independent variables 

are exactly the explanatory variables used in step A for the definition of response probabilities 

(child indicator, number of persons in the household, region, type of locality, density). In Model 

2, independent variables are type of locality, number of persons in household, child indicator. 

Notice that we use the same response indicator variables to fit the two models. This allows the 

effect of the model to be isolated, excluding differences due to random variability in the response 

indicator. 

 

Response rates for the variables defining probabilities as well as the overall response rates and true 

population values of the R-indicator under the two models are shown in Table 4.1. For comparison purposes, 

we report population values of the R-indicator based on both linear and logistic regression models where 

the response rates range between 25.1% and 35.1% under RR1, between 64.7% and 75.4% under RR2 and 

between 84.7% and 94.6% under RR3. RR2 represents the type of response rate seen in large-scale national 

social surveys. As can be seen in Table 4.1, there is little difference in the population values of the R-

indicators based on the linear and logistic link function for RR1 and RR2 and a slight difference for RR3 
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under both models where response rates are in the upper tail of the distribution. We also note that across the 

very different overall response rates, the population values of the R-indicator are generally high.  

 
Table 4.1 
Probabilities of response and percent response generated in the evaluation population dataset according to 
auxiliary variables 
 

   Percentage response 

Variable Category Probability of response RR1 RR2 RR3 

Children in Household  
None 0.6 25.7 65.6 85.7 

1+ 0.8 35.1 75.4 94.6 

Number of Persons in Household  

1-2 0.5 24.6 64.5 84.7 

3-5 0.8 32.9 72.8 92.5 

6+ 0.7 29.9 70.3 90.0 

Type of Locality  

Type 1 0.6 25.1 64.9 85.0 

Type 2 0.7 28.3 68.5 88.4 

Type 3 0.8 31.5 71.7 91.2 

Type 4 0.75 28.9 69.2 88.9 

Region  

1 0.6 25.1 65.1 84.7 

2 0.8 31.2 71.5 91.0 

3 0.7 28.1 67.6 87.8 

4 0.6 26.7 66.5 86.4 

5 0.6 24.8 64.7 84.9 

6 0.7 27.6 67.8 88.0 

7 0.8 30.3 70.4 90.9 

Density  

<=1.5 0.6 26.1 66.0 86.2 

1.5-3.0 0.8 28.9 68.9 88.8 

>3 0.7 24.7 64.7 84.7 

Overall response rate   27.1 67.0 87.0 

“True” Population R-indicator (logistic) Model 1  0.9031 0.9005 0.9063 

 Model 2  0.9103 0.9074 0.9137 

“True” Population R-indicator (linear) Model 1  0.9033 0.9006 0.9076 

 Model 2  0.9104 0.9074 0.9145 

 
When using Model 2, the true R-indicator is always around 0.007 points greater than the corresponding 

value under Model 1. This is due to the fact that Model 2 for estimating the response propensities is mis-

specified. There are fewer auxiliary variables and hence smaller variation in the estimated response 

propensities which leads to a higher R-indicator. As a consequence we obtain a slightly higher R-indicator 

for Model 2 as some of the variation is not captured. For this reason, it is always important to report R-

indicators together with the auxiliary information used to calculate them since their values depend on the 

nonresponse model. In addition, we should use covariates that correlate to the survey variables (Schouten 

et al., 2012).  
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For each response scenario, five hundred samples were drawn from the population under simple random 

sampling (SRS) at three different sampling rates 1%  3,224 ,n   2%  6,448n   and 4%  12,896 .n   

For each sample drawn, a sample response indicator was generated from the “true” population response 

probability based on the logistic link function. This determines the response set .r  Response propensities 

and R-indicators were then estimated from each sample for both sample and population-based auxiliary 

variables. Response propensities are estimated in the sample using the “true” model (either Model 1 or 

Model 2, depending on the scenario). 

In order to estimate the variance of population-based estimators, we employ a non-parametric bootstrap 

algorithm. From each response set, we drew 500B   bootstrap samples using simple random sampling 

(SRS) with replacement. Subsequently, nonresponse was generated in the bootstrap sample by copying the 

0-1 sample response indicator values. A replicate of the estimator was computed over each bootstrap sample.  

 
4.2  Results 
 

Table 4.2 presents results of the evaluation study for each response rate scenario, type of model and each 

sampling rate. We contrast the sample-based R-indicators (under both link functions to highlight any 

differences) with the population-based R-indicators. In the evaluation, we also investigate the performance 

of the population-based composite estimator (PC) as shown in (3.7).  

For each estimator, Table 4.2 shows: a) the percentage Relative Bias (%RB) calculated as 

  500

ˆ1
ˆ100 500 ,jj
R R R  

    where ˆ
ˆ

jR  is the value of the estimator computed for the thj  sample 

and R  is the true R-indicator based on the linear regression model (from Table 4.1), and similarly for 
1
,

T
R
  

2
,

T
R
  and the composite estimator; b) the Relative Root Mean Square Error (RRMSE) calculated as 

  2500
1

ˆ1
ˆ100 500 .jj

R R R  



  

Table 4.2 shows that differences between the sample-based estimators computed using the linear and the 

logistic link functions are very small in general, except when the response rates get very close to 1 (RR3). 

For sample-based and population-based Type 1 and Type 2 estimators there is a general downward bias 

in the unadjusted R-indicators and this tends to decrease as the sample size increases for both Models 1 and 

2. This is as expected. Sampling error tends to lead to overestimation of the variability of the estimated 

response propensities and this leads to underestimation of the R-indicator. The degree of underestimation is 

generally larger for population-based estimators than for the sample-based estimators, especially for higher 

response rates. The variation of response propensities is larger in this case than the variation under sample-

based auxiliary variables. In addition, the RRMSE of the estimators decreases as sample size increases and 

is generally larger for population-based estimators. Thus, the population-based R-indicators are in general 

less accurate than their sample-based counterparts and allow for weaker conclusions regarding the nature of 

response. 
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Table 4.2 
Properties of the estimated R-indicators for sample and population-based auxiliary variables for 500 samples 
in the evaluation study 
 

Response Rate Sample Rate  Estimator  
Model 1 Model 2 

Unadjusted Adjusted Unadjusted Adjusted
%RB %RRMSE %RB %RRMSE %RB %RRMSE %RB %RRMSE

RR1 1% Sample-based (log) -1.73 2.39 0.32 2.01 -0.77 1.88 0.34 1.96
  Sample-based (lin) -1.71 2.37 0.33 2.01 -0.75 1.87 0.35 1.95
  Type 1 -2.32 3.08 0.32 2.54 -1.08 2.32 0.30 2.39
  Type 1 - PC 0.04 2.28 0.22 2.42 0.59 2.44 0.38 2.41
  Type 2  -1.47 2.29 1.06 2.50 -0.20 1.74 1.01 2.27
  Type 2 - PC 0.71 2.11 0.94 2.34 1.19 2.32 1.05 2.28
 2% Sample-based (log) -0.90 1.53 0.14 1.36 -0.41 1.30 0.14 1.31
  Sample-based (lin) -0.89 1.51 0.16 1.36 -0.40 1.29 0.15 1.31
  Type 1 -1.24 1.89 0.12 1.61 -0.51 1.57 0.17 1.59
  Type 1 - PC 0.04 1.56 0.10 1.59 0.38 1.68 0.21 1.62
  Type 2  -0.45 1.30 0.84 1.64 0.26 1.31 0.86 1.63
  Type 2 - PC 0.72 1.53 0.82 1.61 1.02 1.75 0.89 1.66
 4% Sample-based (log) -0.48 1.00 0.05 0.93 -0.27 0.90 0.00 0.88
  Sample-based (lin) -0.46 0.99 0.06 0.92 -0.26 0.89 0.01 0.88
  Type 1 -0.63 1.23 0.05 1.12 -0.34 1.13 -0.01 1.11
  Type 1 - PC 0.15 1.14 0.07 1.12 0.18 1.18 0.01 1.13
  Type 2  0.12 0.92 0.78 1.25 0.40 1.01 0.69 1.19
  Type 2 - PC 0.83 1.29 0.79 1.26 0.83 1.30 0.70 1.20
RR2 1% Sample-based (log) -1.81 2.44 0.33 2.01 -0.76 1.83 0.34 1.94
  Sample-based (lin) -1.79 2.42 0.34 2.01 -0.75 1.82 0.35 1.94
  Type 1 -5.17 5.95 -0.01 3.95 -2.45 3.77 0.25 3.43
  Type 1 - PC -1.50 3.58 -0.47 3.69 0.69 3.37 0.49 3.46
  Type 2  -4.76 5.50 0.27 3.75 -1.95 3.29 0.58 3.23
  Type 2 - PC -1.13 3.28 -0.12 3.51 0.74 3.13 0.71 3.25
 2% Sample-based (log) -1.00 1.59 0.08 1.37 -0.40 1.29 0.14 1.30
  Sample-based (lin) -0.98 1.57 0.09 1.36 -0.40 1.28 0.14 1.30
  Type 1 -2.89 3.55 0.07 2.59 -1.19 2.58 0.37 2.72
  Type 1 - PC -0.57 2.37 -0.12 2.49 0.53 2.67 0.41 2.69
  Type 2  -2.52 3.19 0.39 2.50 -0.79 2.28 0.69 2.63
  Type 2 - PC -0.26 2.19 0.19 2.37 0.81 2.58 0.71 2.60
 4% Sample-based (log) -0.48 0.98 0.07 0.90 -0.16 0.81 0.12 0.83
  Sample-based (lin) -0.46 0.97 0.08 0.90 -0.15 0.81 0.12 0.82
  Type 1 -1.42 2.12 0.13 1.81 -0.60 1.66 0.16 1.67
  Type 1 - PC 0.16 1.77 0.14 1.80 0.37 1.76 0.20 1.69
  Type 2  -1.07 1.82 0.46 1.78 -0.25 1.47 0.47 1.63
  Type 2 - PC 0.45 1.72 0.46 1.75 0.65 1.73 0.50 1.66
RR3 1% Sample-based (log) -1.07 1.59 0.10 1.30 -0.52 1.21 0.02 1.16
  Sample-based (lin) -0.85 1.40 0.24 1.26 -0.41 1.13 0.10 1.13
  Type 1 -6.60 7.32 -0.76 4.24 -3.20 4.61 0.06 4.12
  Type 1 - PC -2.22 4.15 -0.88 4.16 -0.28 3.70 0.09 3.92
  Type 2  -6.29 6.99 -0.53 4.08 -2.85 4.25 0.27 3.95
  Type 2 - PC -2.12 3.97 -0.67 4.02 -0.04 3.52 0.33 3.78
 2% Sample-based (log) -0.73 1.13 -0.14 0.92 -0.30 0.88 -0.03 0.85
  Sample-based (lin) -0.54 0.98 0.01 0.87 -0.20 0.82 0.06 0.82
  Type 1 -3.70 4.31 0.12 2.93 -1.74 2.98 0.20 2.86
  Type 1 - PC -0.78 2.60 -0.15 2.78 0.42 2.81 0.36 2.94
  Type 2  -3.46 4.07 0.30 2.87 -1.46 2.73 0.41 2.77
  Type 2 - PC -0.61 2.47 0.02 2.70 0.64 2.74 0.57 2.87
 4% Sample-based (log) -0.46 0.77 -0.16 0.66 -0.18 0.57 -0.05 0.55
  Sample-based (lin) -0.29 0.66 -0.01 0.61 -0.09 0.53 0.04 0.53
  Type 1 -1.96 2.62 0.12 2.12 -0.89 1.81 0.13 1.76
  Type 1 - PC -0.03 1.97 0.07 2.06 0.38 1.84 0.19 1.79
  Type 2  -1.74 2.42 0.31 2.07 -0.66 1.65 0.31 1.71
  Type 2 - PC 0.11 1.89 0.25 2.00 0.56 1.81 0.38 1.75

 

In general, the unadjusted population-based composite estimators have a better performance than the 

corresponding unadjusted population-based estimators, both in terms of %RB and RRMSE, especially for 

higher response rates. They still show some degree of overestimation under the correct Model 1 for low 

response rates and underestimation for high response rates. However, for Model 2 we see overestimation.  
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We now turn to the bias-adjusted estimated R-indicators in Table 4.2. For Type 1, the bias adjustment is 

able to remove the bias. The analytical bias adjustment for Type 1 population-based estimator works well 

and generally outperforms the analytical bias adjustment for Type 2 population-based estimates. It seems to 

pick up most of the bias and provides adjusted estimates that are closer to sample-based R-indicators. The 

RRMSE for the bias-adjusted estimator is generally similar to the corresponding RRMSE for the unadjusted 

estimator, meaning that the increase in variability is compensated by the bias reduction. For higher response 

rates, the adjusted population-based composite estimate reduces the bias and RRMSE of their corresponding 

population based R-indicators. 

In unadjusted form, the Type 2 R-indicator behaves better than the Type 1 R-indicator. This is rather 

surprising as we seem to be able to have more accurate estimation of the true R-indicator when using less 

information. The reason for this is that for the Type 1 estimator we do not include any of the sampling 

variation when we “plug in” the population covariance matrix, whilst for the Type 2 estimator we use only 

the marginal information and “plug in” the response covariance matrix which accounts for more of the 

sampling variation. After the bias adjustment, the Type 2 estimators have higher %RB (especially for lower 

response rates) but similar RRMSE. Type 2 bias adjustment performs worse than the bias adjustment for 

Type 1 and overcompensates for the bias. This result was expected as the Type 2 bias adjustment is based 

on a linear approximation, while Type 1 bias adjustment is computed exactly.  

Regarding increasing response rates, surprisingly, for the population-based unadjusted estimators, we 

observe a better performance for lower response rates, both in terms of percentage relative bias (%RB) and 

RRMSE. The RRMSE of RR3 are 2 to 3 times larger than for RR1. Analytical bias adjustments work very 

well under all response rates, although with higher RRMSEs for higher response rates. These RRMSEs are 

reduced by the use of the composite estimators. 

Regarding the effect of the number of variables in the model, a lower %RB and RRMSE are observed 

under Model 2 for unadjusted population-based estimators compared to Model 1. The composite estimators 

show in general an opposite pattern. The bias-adjusted versions show similar performance under the two 

models. 

Table 4.3 shows the mean of the estimated opt  for the composite population-based Type 1 and Type 2 

estimators compared to the true value obtained from the population under the two extreme response rate 

scenarios, RR1 and RR3. It can be seen that the mean estimated opt  does not deviate greatly from their true 

values in the evaluation study. 
 

Table 4.3 
Mean opt  for population-based auxiliary variables for 500 samples in the evaluation study 
 

Response Rate Sample Rate 
Model 1 Model 2 

Type 1 Type 2 Type 1 Type 2 
True Pop-based True Pop-based True Pop-based True Pop-based 

RR1 1% 0.40 0.33 0.36 0.33 0.31 0.29 0.26 0.28 

 2% 0.25 0.21 0.22 0.21 0.19 0.22 0.15 0.19 

 4% 0.14 0.13 0.13 0.13 0.10 0.10 0.08 0.09 
RR3 1% 0.68 0.44 0.67 0.44 0.57 0.51 0.55 0.48 

 2% 0.51 0.39 0.50 0.38 0.41 0.43 0.39 0.41 

 4% 0.35  0.27 0.34 0.27 0.25  0.23 0.24 0.22 
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Table 4.4 analyses the performance of the bootstrap estimators for estimating the variance of population-

based R-indicators under the two extreme response rate scenarios, RR1 and RR3. Analytical expressions 

for the variance of sample-based R-indicators have been developed and used in the evaluation study (see 

Shlomo et al., 2012). Simulation means of the variance estimators are compared in Table 4.4 with the 

simulation variances (calculated across the replicated samples), using percentage relative bias. The table 

also includes the Coverage Rate defined as the percentage of times that the true R  is contained in the 

confidence interval    500

ˆ ˆ1
ˆ ˆ ˆ100 1.96 500 ,j j jj

I R R V R  
     where  ˆ

ˆ ˆ
j jV R  is the estimated 

variance for the thj  sample (linearization variance estimator for sample-based estimator and bootstrap 

variance estimator for population-based estimators) and I  is the indicator function. The bootstrap variance 

estimators for population-based estimators work well. The sample-based estimator show better coverage 

than the corresponding population-based versions. Type 1 and Type 2 population-based estimators have 

similar coverages. The coverage always improves as the sample size gets larger.  

The behaviour under different response rates is mixed. There seems to be an interaction between sample 

size and response rate. The number of variables in the model does not have a large impact on coverage. 

However, we observe problems with coverage for the population-based estimators under the highest 

response rate (RR3), especially for the 1% sample rate. 

Figures 4.1, 4.2 and 4.3 present box plots comparing the estimators and their bias adjusted versions when 

fitting Model 1, under different response rate scenarios RR1, RR2 and RR3 respectively. The gains from 

the bias adjustments are evident for Type 1 and Type 2 R-indicators. Standard errors for RR3 are much 

larger than for RR1 under the same sampling rates. The variability of the bias-adjusted estimator increases 

and it is larger for smaller sample sizes.  

 
Table 4.4 
Properties of variance estimators for R-indicators under sample and population-based auxiliary variables for 
500 samples 
 

Response rate Sampling rate Estimator 
Model 1 Model 2 

%RB Coverage %RB Coverage 
RR1 1% Sample-based 1.84 0.95 -5.74 0.95
  Type 1 4.35 0.95 11.12 0.96
  Type 2 4.99 0.94 7.72 0.95
 2% Sample-based 1.43 0.96 1.15 0.95
  Type 1 8.62 0.96 5.31 0.95
  Type 2 7.03 0.93 2.10 0.92
 4% Sample-based 7.93 0.97 -4.58 0.95
  Type 1 13.23 0.96 3.42 0.95
    Type 2 13.38 0.89 2.53 0.90
RR3 1% Sample-based -1.05 0.95 -9.48 0.92
  Type 1 2.87 0.78 11.47 0.86
  Type 2 4.97 0.78 10.26 0.85
 2% Sample-based -4.34 0.94 -7.96 0.94
  Type 1 -7.61 0.92 2.37 0.91
  Type 2 -8.07 0.92 1.02 0.90
 4% Sample-based 3.31 0.94 -3.54 0.95
  Type 1 -8.33 0.93 12.32 0.96
    Type 2 -8.13 0.93 10.89 0.96
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Figure 4.1  Boxplots for 500 estimated R-indicators for 1% and 4% samples for Model 1 and RR1. (SLOG) 

denotes the logistic sample-based R-indicator, (SLIN) the linear sample-based R-indicator, (T1) the 
Type 1 population-based R-indicator, (T2) the Type 2 population-based R-indicator, and (T1PC) 
and (T2PC) the Type 1 and Type 2 population-based composite estimators. ADJ refers to the 
corresponding bias-adjusted estimators. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Boxplots for 500 estimated R-indicators for 1% and 4% samples for Model 1 and RR2. (SLOG) 
denotes the logistic sample-based R-indicator, (SLIN) the linear sample-based R-indicator, (T1) the 
Type 1 population-based R-indicator, (T2) the Type 2 population-based R-indicator, and (T1PC) 
and (T2PC) the Type 1 and Type 2 population-based composite estimators. ADJ refers to the 
corresponding bias-adjusted estimators. 
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Figure 4.3  Boxplots for 500 estimated R-indicators for 1% and 4% samples for Model 1 and RR3. (SLOG) 

denotes the logistic sample-based R-indicator, (SLIN) the linear sample-based R-indicator, (T1) the 
Type 1 population-based R-indicator, (T2) the Type 2 population-based R-indicator, and (T1PC) 
and (T2PC) the Type 1 and Type 2 population-based composite estimators. ADJ refers to the 
corresponding bias-adjusted estimators. 

 
5  Application to the Dutch Health Survey 
 

In this section, we apply the population-based Type 1 and Type 2 estimators to the Dutch Health Survey 

conducted by Statistics Netherlands. We employ three auxiliary variables that are part of the gold standard 

for Dutch market research companies and compare population-based performance to sample-based 

performance. 

The Dutch Health Survey (HS) was commissioned in 1998 as a repeated cross-sectional survey among 

the full population registered in the Dutch Population Register, but excluding the institutionalized 

population. It uses a two-stage, self-weighting sampling design in which the first stage is formed by 

municipalities and the second stage by persons living in the selected municipalities. Until 2012, the HS was 

a face-to-face survey. In 2012, it changed to a mixed-mode design involving online and face-to-face 

interviews. Over the years, the sample size was reduced considerably from around 35,000 to around 18,000. 

We use the 2002 HS data, one of the last years with the original sample size. The net sample size is 33,584 

persons. 

To calibrate national and regional samples, Dutch market research companies use the so-called Gold 

Standard population statistics produced by Statistics Netherlands (MOA, 2015). The Gold Standard is an 

explicitly defined set of auxiliary variables that affiliated companies include in their survey questionnaires. 

Three of these variables are age, gender and marital status. We focus on these three in the application.  
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Table 5.1 contains the HS sample and response distributions, and the Statistics Netherlands’ population 

distributions for the three variables. Joint population distributions, needed to estimate the Type 1 population-

based covariance matrices, are also available, but not given here. In practice, the sample distribution is, of 

course, unknown. The three variables show a different picture: for age and marital status, the response 

distribution is closer to the sample distribution than to the population distribution, and population-based 

response propensities give more variation. For gender, the population distribution is closer to the response 

distribution and less variation is found.  

 

Table 5.1 
Age, gender, and marital status distributions for the sample, respondents, and population 
 

Variables Categories Respondents Sample Population 

Age 20-24 7.5 7.9 8.1 

 25-29 7.3 8.2 8.9 

 30-34 9.9 10.2 10.9 

 35-39 10.9 10.8 11 

 40-44 10.3 10.3 10.4 

 45-49 9.7 9.4 9.6 

 50-54 9.4 9.6 9.5 

 55-59 8.8 8.9 8 

 60-64 7.1 6.7 6.3 

 65-69 5.9 5.6 5.4 

 70-74 5.4 4.7 4.6 

 75+ 7.7 7.8 7.2 

Gender Male 48.9 49.8 49.2 

 Female 51.1 50.2 50.8 

Marital status Not married 23.7 26.8 26.9 

 Married 63.3 59.3 58.8 

 Widowed 6.5 6.7 6.7 
  Divorced 6.4 7.2 7.6 

 
We estimate Type 1 and Type 2 population-based R-indicators in Table 5.3. For the composite estimator, 

we used the estimated smoothing parameter opt  based on the population-based response propensities. We 

also include an estimate for opt  calculated using sample-based response propensities. The latter cannot 

normally be computed and is included for comparison only. Table 5.2 contains the estimated smoothing 

parameter opt  based on both the population-based response propensities and the sample-based response 

propensities. The sample-based opt  are larger and tend to have a stronger smoothing effect. However, all 

opt  are relatively small.  

Table 5.3 contains the various population-based R-indicators. For comparison, the sample-based R-

indicator is also provided where we used the logistic link function. The linear link function produced the 

same result. We can conclude that the population-based R-indicators, using only response and population 

distributions, are different from the sample-based R-indicators, using response and sample distributions. 

This difference increases, as expected, when Type 2 indicators are used. The composite estimators perform 

slightly better than the non-composite estimators, but there is still a considerable difference. This is not due 
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to a biased smoothing parameter, as the difference is only modestly smaller when sample-based propensities 

are used to estimate the smoothing parameter. Furthermore, after bias adjustment, the differences between 

the composite estimators for sample-based and population-based propensities vanish.  

 

Table 5.2 
Values for smoothing parameter opt  based on population-based response propensities and on sample-based 
response propensities for Type 1 and 2 composite estimators 
 

 

Smoothing parameter opt  

Type 1 Type 2 

Population-based response propensities 0.043 0.038 

Sample-based response propensities 0.076 0.095 

 
Table 5.3 
Unadjusted and bias-adjusted sample-based and Type 1 and Type 2 population-based R-indicators for the HS 
2002 data. The population-based composite R-indicators are based on the smoothing parameter opt  using 
population-based and sample-based response propensities. 95% confidence intervals (CI) by normal 
approximation are provided 
 

  Unadjusted Bias-adjusted 

 Estimator R-indicator 95% CI R-indicator 95% CI 

Sample-based 0.899 0.888 0.909 0.901 0.890 0.912 
Type 1 – original 0.876 0.860 0.891 0.879 0.864 0.895 
Type 1 – composite population-based 0.880 0.865 0.896 0.880 0.864 0.895 
Type 1 – composite sample-based 0.883 0.868 0.898 0.880 0.865 0.895 
Type 2 – original 0.873 0.858 0.889 0.877 0.861 0.894 
Type 2 – composite population-based 0.878 0.863 0.894 0.878 0.862 0.893 
Type 2 – composite sample-based 0.881 0.866 0.897 0.878 0.863 0.893 

 
A conclusion from the application is that the lower population-based R-indicators result from the large 

differences between sample and population distributions of the auxiliary variables. For a sample size of 

33,584 persons, a test of the differences between sample and population distributions is significant for all 

three variables at the 5% level. The available Dutch Health Survey net sample does not contain sampling 

units with frame and/or other administrative errors as well as out-of-scope populations such as 

institutionalized persons. This modification plus some additional, small tailoring to interviewer workloads, 

most likely caused sample distributions to differ from the original population counts. This points at the 

“Achilles heel” of population-based R-indicators: it is imperative that there is no disparity between 

definitions and populations. 

 
6  Discussion 
 

The extension of sample-based to population-based estimators of R-indicators is comprised of two steps: 

1) the estimation of response propensities, and 2) the estimation of the R-indicators based on these 
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propensities. The population-based estimation of response propensities is straightforward when linear 

models are assumed for response propensities and response influences. The linear link function is reasonable 

when estimating response propensities under typical response rates seen for large-scale national social 

surveys as shown in the evaluation study in Section 4. The sample-based estimators contain sample 

covariance matrices and sample frequencies that can be replaced by population covariance matrices or 

population frequencies. We identified two types of settings: when population cross-products are available 

or when auxiliary information is restricted to marginal population counts only. We labelled the 

corresponding estimators as Type 1 and Type 2 estimators, respectively. The Type 2 setting is more 

restrictive than the Type 1 setting.  

Following the estimation of population-based response propensities, we have constructed population-

based estimators for the R-indicator and examined their properties both theoretically and empirically. The 

estimators are applied to samples drawn from real data from the 1995 Israel Census Data where “true” 

propensities were calculated according to realistic assumptions for national household social surveys. Thus, 

we have addressed the first two research questions at the beginning of the paper: How to extend sample-

based response propensities and R-indicators to population-based response propensities and R-indicators? 

and What are the statistical properties of population-based R-indicators? 

There are many options for the estimation of R-indicators depending on the response to the survey. We 

used propensity weighted response means as the propensities are available. However, any calibration 

method can be used such as linear weighting or adjustment classes. In fact, the set of auxiliary variables 

used for the estimation of the R-indicators may be a subset of the auxiliary variables used for the estimation 

of propensities and influences. Parsimonious models may prove to be more efficient as it is known that 

propensity-weighting may seriously affect the precision of the estimators. This is a topic for future research.  

The two properties we examined are the bias and standard errors of the proposed population-based R-

indicators. As expected the bias and standard errors are dependent on the size of the sample and the type of 

auxiliary information available where the smaller the sample, the larger the bias and the standard error. 

When samples are smaller, it becomes more difficult to distinguish sampling variation from response 

variation. Clearly, the confidence intervals become larger as there is less information in small samples.  

The bias-adjusted Type 1 estimators (population cross-products) perform better than the bias-adjusted 

Type 2 estimators (population marginal counts). This is as expected given that they employ more 

information. However, the unadjusted Type 2 estimators have better RRMSE properties than the unadjusted 

Type 1 estimators. This is a surprising result and points to a suboptimal use of the population cross-products 

when they are used as “plug-ins” and do not account for any sampling variation. The standard errors of the 

population-based estimators are larger than their sample-based counterparts. 

The evaluation study in scenario RR3 shows that, for very high response rates, the population-based R-

indicators provide higher standard errors and larger bias, mainly due to propensities being estimated outside 

of the interval [0, 1]. For this reason, we proposed a composite estimator with varying smoothing parameters 

dependent on the response rate. Standard errors were reduced but at the cost of increased bias.  
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From the analyses it becomes apparent that the bias of the Type 1 and Type 2 estimators depends on the 

number of auxiliary variables, but this dependence was modest in our evaluations. The bias may increase 

when using detailed models with many variables for the estimation of response propensities. The rationale 

behind this is that detailed models allow for more sampling variation to be picked up as bias.  

The population-based R-indicators have a number of caveats:  

Firstly, the choice of auxiliary information that is available at a national level may be more limiting than 

sample-based auxiliary information depending on the availability of registers and administrative data. The 

selection of auxiliary variables should depend on whether they are correlated with the survey target 

variables. Also, it is strongly recommended that population statistics that are based on registers or 

administrative data are used rather than those based on weighted survey counts from other surveys since 

these statistics may not reflect the true population distribution accurately. One would draw erroneous 

conclusions about the representativeness of the response if the population estimates are biased. 

Secondly, we make the assumption that the survey measures the same quantities as in the population 

information and we do not investigate the effect of possible departures from this assumption. However, we 

note that there is an imminent risk of measurement errors when comparing the representativeness of survey 

questions to population statistics. It must be ascertained that the survey questions that are employed have 

the same definitions and classifications as the population tables. Hence, it is best to avoid questions that are 

prone to measurement errors, such as questions that require a strong cognitive effort or that may lead to 

socially desirable answers.  

Thirdly, in settings where only population information is available, options to improve representativeness 

during data collection are much more limited since there is no individual auxiliary information available for the 

nonrespondents. Nonetheless, in these settings, assessments of representativeness may still be useful in the design 

of advance and reminder letters, in interviewer training and in paradata collection. 

Finally, we do not consider hybrid settings where the R-indicator is based on both linked data and 

population tables. In addition, we do not deal with the case where we could use weighted survey estimates 

if there is no aggregated population information available. This will impact on both the bias and variance 

estimates for the population based R-indicators. Such extensions are relatively straightforward but will be 

left to future papers. 

The research into population-based R-indicators is still at the beginning stage and it is too early to provide 

a definitive answer to the last research question presented in the introduction regarding the feasibility and 

practicability of R-indicators based on aggregate population auxiliary information. As mentioned in the 

introduction, further usage of these R-indicators are being explored in the context of evaluating and 

monitoring streamed administrative data and assessing the representativeness of linked records. In addition, 

Schouten et al. (2011) introduced partial R-indicators under sample-based auxiliary information for 

evaluating the lack of representativeness due to a specific auxiliary variable or category. These were used 

for monitoring and evaluating data collection. Schouten and Shlomo (2017) demonstrate the use of partial 
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R-indicators for adaptive survey designs. It is straightforward, similarly, to define population-based partial 

R-indicators and this will be a subject of future work.  

Regarding the evaluation study presented in Section 4 on survey representativeness, it is based on real 

data under realistic assumptions of response probabilities typically found in social surveys conducted at 

national statistical institutes. Future research needs to assess whether alternative estimators can be 

constructed that are more precise, and, consequently, allow for stronger conclusions regarding the nature of 

response. A natural avenue to explore is an iterative approach through a modification of the EM-algorithm, 

in which the score of the nonrespondents on the auxiliary variables is estimated and used to update response 

propensity estimates. 

We did not consider population-based estimation for other types of models such as logistic or probit 

regression. As shown in the numerical evaluation in Section 4, differences in sample-based estimators 

between the linear and logistic link function are in general small, but when the response rates get very close 

to 1, they become more evident. For these cases, developing other link functions for population-based 

estimation is a subject of future research. This would be a useful and natural extension to the theory of R-

indicators as these models are often used in practice and avoid propensities outside the [0, 1] interval.  
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Appendix A 
 
Analytic approximation to the bias of Type 1 

1T
R
  estimators 

 

First, we compute the bias of 
1

2
T

S 
  under general sampling design. Letting 1

1ˆ ir
m N d   and 

1
2 , 1ˆ ,i i Tr

m N d     then we can write 

            
1 1

22 2 2 2 2
2 1 1

1
ˆ ˆ ˆ .

1 1T T i U
i U

N N
B S E S S E m V m E m

N N N    


           
 

   (A.1) 
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Note that 
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where ik ik i k      and ik  are the second-order sample inclusion probabilities. Hence, the bias of 

1

2
T

S 
  with respect to the joint distribution of sampling design and the response mechanism is given by 
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(A.2)

 

Under simple random sampling without replacement, (A.2) can be simplified to 

       
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A response-set based estimator of  
1

2SRS
T

B S 
  is  
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More generally, the Horvitz-Thompson response-set estimator for (A.2) under complex sampling is 

given by 
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Appendix B 
 
Analytic approximation to the bias of Type 2 

2T
R
  estimators 

 

The strategy to compute an analytical bias adjustment for 
2

2
T

S 
  is to first approximate , 2i T  by a linear 

estimator using Taylor linearization techniques. Next, compute an approximate bias adjustment for 
2

2 ,
T

S 
  

by inserting the linear approximation for , 2i T  into 2ˆ .m  

In the following, define, for 1, ,j p   and 1, , ,j p    the estimated totals 
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Proposition 1. The estimator , 2i T  defined in (2.7) may be approximated by 
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Proof. Following standard Taylor linearization (see Särndal, Swensson and Wretman, 1992 and Bethlehem, 

1988), the estimator , 2i T  may be approximated by 
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where 1*
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where jjΛ  is a   -p p matrix with ones in positions  ,j j  and  ,j j  and zeros elsewhere and jλ  is 

a p -vector with the thj  component equal to one and zeros elsewhere. Inserting the partial derivatives into 

(B.1) gives the result.  
 

Proposition 2. Under simple random sampling, an approximate bias for 
2

2
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  with respect to the joint 

distribution of sampling design and the response mechanism is given by 
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Proof. Thanks to Proposition 1, 2m̂  defined in Appendix A may be approximated as follows 
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The expected values of the terms , ,A B  and C  are 
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It follows that, under simple random sampling,  2ˆE m  becomes 
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So the total bias under simple random sampling is obtained by inserting  SRS
2ˆE m  computed above into 

(A.1) and following the proof in Appendix A for the other terms. 

The response-set based estimator  
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More generally, the Horvitz-Thompson response-set estimator under complex sampling for the bias 

adjustment of Type 2 population-based R-indicator is given by 
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