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Semiparametric quantile regression imputation for a 
complex survey with application to the Conservation Effects 

Assessment Project 

Emily Berg and Cindy Yu1 

Abstract 

Development of imputation procedures appropriate for data with extreme values or nonlinear relationships to 
covariates is a significant challenge in large scale surveys. We develop an imputation procedure for complex 
surveys based on semiparametric quantile regression. We apply the method to the Conservation Effects 
Assessment Project (CEAP), a large-scale survey that collects data used in quantifying soil loss from crop fields. 
In the imputation procedure, we first generate imputed values from a semiparametric model for the quantiles of 
the conditional distribution of the response given a covariate. Then, we estimate the parameters of interest using 
the generalized method of moments (GMM). We derive the asymptotic distribution of the GMM estimators for 
a general class of complex survey designs. In simulations meant to represent the CEAP data, we evaluate variance 
estimators based on the asymptotic distribution and compare the semiparametric quantile regression imputation 
(QRI) method to fully parametric and nonparametric alternatives. The QRI procedure is more efficient than 
nonparametric and fully parametric alternatives, and empirical coverages of confidence intervals are within 1% 
of the nominal 95% level. An application to estimation of mean erosion indicates that QRI may be a viable option 
for CEAP. 

 
Key Words: Informative sample design; B-spline; Erosion. 

 
 

1  Introduction 
 

Missing data have important implications for analyses of survey data. Missing data can arise because 

sampled units refuse to participate in the survey, are difficult to locate, do not respond to sensitive questions, 

or drop out of longitudinal studies. If the missing values are related to the variable of interest, an analysis 

of the complete data with no modification for missing values, is biased. Weighting and imputation are two 

broad classes of missing data adjustments. 

Two types of weighting adjustments are calibration (D’arrigo and Skinner, 2010 and Kott, 2006) and 

propensity score estimation (Kim and Riddles, 2012). In calibration, the weights for the respondents are 

adjusted so that the weighted sum of an auxiliary variable for the respondents is equal to the corresponding 

mean for the full sample or a population mean. In propensity score estimation, the sampling weight is 

multiplied by the inverse of an estimated response probability.  

Imputation completes the data set, replacing missing response variables with imputed values. Imputation 

can simplify analyses in the presence of item nonresponse and improve consistency in results across users. 

We consider imputation of a response ,y  which may be missing, using an auxiliary variable x  that is 

observed for the full sample. To allow flexibility in the model assumptions, we use a semiparametric 

quantile regression model to describe the relationship between x  and .y  
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A diverse range of imputation procedures exists (Kim and Shao, 2013). Parametric fractional imputation 

(Kim, 2011) and parametric multiple imputation (Rubin, 2004) generate imputed values from an estimate 

of a fully parametric model for the conditional distribution of the response given covariates. Hot deck 

imputation (i.e., Andridge and Little, 2010), in contrast, includes, a class of nonparametric procedures in 

which imputed values are selected from respondents. In some hot deck procedures, weights are assigned 

according to a proximity measure, defined by imputation classes (Brick and Kalton, 1996) or a metric 

(Rubin, 2004; Little, 1988) such as a kernel distance (Wang and Chen, 2009). Nonparametric imputation is 

more robust to model misspecification than fully parametric methods, but estimators based on 

nonparametric procedures can have poor efficiency in small samples. Semiparametric quantile regression 

imputation (QRI) is a compromise between nonparametric and fully parametric imputation procedures. In 

QRI, the imputed values for a single missing value are the estimated quantiles of the distribution of the 

missing observation conditional on a function of auxiliary variables. Because a semiparametric model for 

the quantile function is used, QRI is robust to model misspecification, and because values are imputed from 

estimated quantiles, QRI is resistant to extreme values. Chen and Yu (2016) develop QRI for simple random 

sampling from an infinite population. We extend Chen and Yu (2016) to allow unequal selection 

probabilities. 

Many imputation procedures rely on a missing at random (MAR) assumption (Rubin, 1976). A common 

assumption is that the response variable ( ,y  which may be missing) is conditionally independent of the 

missing indicator (1 if a response is provided and 0 otherwise) given the observed data. A direct application 

of this MAR definition to a complex survey specifies independence of the response variable and missing 

indicator variable conditional on the auxiliary variable and the sample inclusion indicators (Little, 1982; 

Pfeffermann, 2011). Berg, Kim and Skinner (2016) call the missing at random assumption that is defined 

conditional on the sample inclusion indicators sample missing at random. An alternative assumption, called 

population missing at random (Berg et al., 2016), is that the response variable is conditionally independent 

of the missing indicator given the auxiliary variable in the superpopulation, unconditional on the sample 

inclusion indicators. Berg et al. (2016) show that these two assumptions are not equivalent. We discuss these 

MAR concepts precisely in Section 2 and develop our procedure to be sufficiently flexible to accommodate 

either condition. 

Our interest in semiparametric quantile regression for a complex survey is motivated in part by the 

Conservation Effects Assessment Project (CEAP), a complex survey intended to quantify soil and nutrient 

loss from crop fields. Because distributions of the response variables are highly skewed and contain extreme 

values, specification of an adequate fully parametric imputation model is difficult, and hot deck imputation 

procedures may have large variances. We investigate the use of QRI to address these issues in imputation 

for CEAP. 

We demonstrate the theoretical validity and applicability of semiparametric quantile regression 

imputation in the context of a complex survey. Section 2 and Section 3, respectively, present the imputation 

algorithm and asymptotic properties. Section 4 and Section 5 demonstrate the properties of QRI through the 
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CEAP application and simulations, respectively. Section 6 concludes with a summary and a discussion of 

areas for future research. 

 
2  Quantile regression imputation for complex survey data 
 

Consider a conceptual framework in which samples are drawn from a finite population generated from 

a superpopulation model (Fuller, 2009b, Chapter 6). Let ix  and iy  have joint distribution  ,i if x y  in the 

superpopulation. We define the conditional distribution of iy  given ix  through the conditional quantile 

function. Let  iq x  denote the th  quantile of the conditional distribution of iy  given ix  in the 

superpopulation, where  iq x  is defined by  

    = .i i iP y q x x   (2.1) 

We specify a model for the quantiles because quantile regression models can describe a wide variety of 

distributions, as illustrated in Figure 2.1. The left panel of Figure 2.1 depicts a linear quantile regression 

model in which each conditional quantile function is represented with a different intercept and a different 

slope. The use of a different slope allows describing data with nonconstant variances. The right panel of 

Figure 2.1 illustrates a generalization to semiparamtric quantile regression, where the th  quantile of the 

conditional distribution of iy  is represented as a continuous function of .ix  In the imputation procedure, 

we assume  q   is a function with 1p   continuous derivatives. We approximate  iq x  with a B-spline 

(de Boor, 2001; Chen and Yu, 2016; Yoshida, 2013; Hastie, Tibshirani and Friedman, 2009), as we explain 

in more detail in Section 2.2. To enable the use of the B-spline, we assume ix  has compact support but do 

not require further distributional assumptions for .ix  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1  Illustration of linear quantile regression (left) and semiparametric quantile regression (right). 
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We consider estimation of parameters that are defined in terms of the superpopulation model relating iy  

to ,ix  rather than finite population parameters. The true parameter of interest, ,oθ  is a d dimensional 

vector satisfying,  

   , ; = ,i i oE y xg θ 0  (2.2) 

where  , ;i i oy xg θ  is an r dimensional function with two continuous derivatives, and .r d  The 

expectation operator  E   denotes expectation with respect to the superpopulation model. Note that 

     , ; = , ; ,i i o y x i i oE y x E E y x  g θ g θ  where  
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(2.3)

 

and  y x i iF y x  and   ,y x i if y x  respectively, denote the cumulative distribution function (cdf) and 

probability density function (pdf) of the conditional distribution of iy  given .ix  The second equality in 

(2.3) follows from the probability integral transform and a change of variables from iy  to the uniformly 

distributed   with pdf     = 0,1 ,f I    where  I   is the indicator variable that takes the value 1 if 

the argument is true and 0 otherwise. The relationship defined by the third equality in (2.3) plays an 

important role in the imputation procedure. For each missing ,iy  we construct J  imputed values defined 

    
1

ˆ ˆ, , ,
Ji iq x q x   where  ˆ

j iq x  estimates   ,
j iq x  and 1 , , J   form a fine grid on the interval 

 0, 1 .  We then estimate   , ;y x i i oE y xg θ  by approximating the integral in the last expression of (2.3) 

with an average of the J  imputed values. 

The imputation procedure consists of two main steps. We first construct the imputed values, estimating 

 iq x  using a linear combination of B-spline basis functions. We then estimate oθ  using the generalized 

method of moments (GMM), replacing missing iy  with the estimate of   , ;y x i i oE y xg θ  based on the 

imputed values and the relationship (2.3). To formalize the procedure, we require specific assumptions about 

the design and the response mechanism, which we specify in Section 2.1. Section 2.2 explains estimation 

of the quantile function, and Section 2.3 describes the generalized method of moments. Software for 

implementing the procedures is available from the authors. 
 

2.1  Assumptions on design and response mechanism 
 

Let iI  be the sample membership indicator, defined by = 1iI  if unit i  is selected. Let i  and ij  be 

the first and second order inclusion probabilities, respectively, defined by  

    , = = 1 , , = 1, = 1 , , , .i ij i i i i j i i j jP I y x P I I y x y x         (2.4) 

Dependence of i  on iy  in (2.4) represents a possible correlation between iy  and i  that can cause the 

sample design to be informative for the quantile regression model (2.1). We denote the selected sample by 

,A  where  = : = 1 .iA i I   
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We assume ix  is observed for all i  in ,A  while iy  may be missing. Let i  be the response indicator, 

defined by = 1i  if iy  is observed, and = 0i  if iy  is missing. Assume  Bernoulli ,i ip   where the 

response probability ip  is defined as  

  = = 1 , , .i i i i ip P y x I  (2.5) 

To define an approximately unbiased imputation procedure, we require an assumption about the 

relationship between i  and .iy  A common approach in missing data analysis is to assume that the response 

variable, ,iy  is independent of the missing indicator, ,i  conditional on the observed values (Little, 1982 

and Pfeffermann, 2011). This assumption is a widely used interpretation of the missing at random (MAR) 

definition given in Rubin (1976) and clarified in Mealli and Rubin (2015). For a complex survey, the 

relationship between the inclusion probabilities, the response probabilities, and y  can be complex if the 

response indicators and the sample inclusion indicators depend on a variable that is not included in the 

imputation model. 

We follow the approach of Berg et al. (2016) and consider two assumptions about the relationship 

between i  and .iy  We define sample missing at random (SMAR) to mean  

    = 1 , , = = 1 , .i i i i i i iP x y I P x I   (2.6) 

In contrast, we define population missing at random (PMAR) to mean  

    = 1 , = = 1 .i i i i iP x y P x   (2.7) 

Berg et al. (2016) discuss situations in which the PMAR assumption may be viewed as reasonable and 

provide examples where PMAR holds while SMAR fails. If the response probabilities and the sample 

inclusion probabilities depend on a variable that is not included in the imputation model, then the PMAR 

may hold while SMAR does not. One example of a variable that may be excluded from the imputation 

model is a design variable. The analyst may omit a design variable from the imputation model if the design 

variable is unavailable at the imputation stage or because the imputation model is a subject-matter model 

relating iy  to .ix  We develop the QRI procedure to be flexible enough to accommodate either PMAR or 

SMAR. In practice, the analyst can decide whether PMAR or SMAR is more realistic for a particular 

application. In Section 2.2, we explain precisely how the nature of the missing at random assumption can 

impact the use of sampling weights in the estimation procedure. In the theory of Section 3, we focus on the 

situation in which assumption (2.7) holds. 

 
2.2  Quantile regression with penalized B-Splines 
 

We approximate the quantile function defining the relationship between iy  and ix  in the 

superpopulation with a linear combination of B-spline basis functions. A B-spline basis of order p  spans 

the linear space of piecewise polynomials of degree 1p   with continuous derivatives up to order 2.p   
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B-splines allow improvements in computational efficiency over direct use of polynomial splines (Hastie, 

Tibshirani and Friedman, 2009). 

To define the B-spline, we borrow terminology from Hastie, Tibshirani, and Friedman (2009) and Chen 

and Yu (2016). Assume ix  has compact support on the interval  1 2, .M M  Define 1nK   interior knots, 

spaced at equidistant locations in the interval  1 2,M M  by,    1
1 2 1= ,i nM M M K i    for 

= 1, , 1.ni K   Define p  boundary knots at 1M  by k  for = 1, , 0,k p    and denote the p  

boundary knots at 2M  by k  for = , , 1.n nk K K p   The thp  degree B-spline basis functions for 

the knot sequence 1 1, ,
np K p      are the elements of the nK p  dimensional vector,  

           1= , , ,
n

p p
p Kx B x B x 

B   (2.8) 

where    s
iB x   = 1, ,s p  is defined recursively through divided differences. Specifically,  

      1
1= , for = 1, , 2,i i i nB x I x i p K p         (2.9) 

and  

            1 1
1

1 1

= ,i i ss s s
i i i

i s i i s i

x x
B x B x B x

 
   

 


   

 


 
 (2.10) 

for = 1, , 1ni p K p s      and = 2, , .s p  

The estimator of the quantile regression function is defined by  

     ˆˆ = ,q x x 
B β  (2.11) 

where the estimator ˆ
β  is obtained by minimizing the quadratic form,  

     
=1

= ,
2

n
n

i i i i i m m
i

Q w b y x 


     β B β β D D β  (2.12) 

where   1
1 1

=1
= ,

n

i i ii
w  


  n  is a specified smoothing parameter, and   ,  ,ib  and mD  are defined 

as follows. The function  u  in the first term of (2.12), is the check function of Koenker and Bassett 

(1978) defined by  

     = < 0 .u u I u    (2.13) 

Koenker’s check function (2.13) is a standard optimization criterion for quantile regression because  q x  

minimizes the function     =R a E y a x   across .a  The second term of (2.12) imposes a roughness 

penalty on the estimated quantile regression function. The matrix mD  is the thm  difference matrix with 

 ,i j  element,         = 1 , 0 1 0 ,j i
ijd C m j i I j i m I j i m           where  ,C a b  is 

the choose function. When = 2,m mD  has an interpretation related to the integral of the square of the 

second derivative of the function defined by the B-spline. Because the second derivative of a straight line is 

zero, the use of mD  for = 2m  shrinks the estimated quantile regression function toward a straight line. The 

appropriate choice of ib  in the first term of (2.12) depends on the assumptions about the nonresponse 
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mechanism. If (2.6) holds, then one may set 1= ,i ib w   which leads to the unweighted estimating equation 

of Chen and Yu (2016). If (2.6) is not satisfied, the unweighted estimator may lead to bias, and setting 

= 1ib  is one way to attain an approximately unbiased estimator (Berg et al., 2016). We focus on the 

conservative choice of = 1,ib  which leads to consistent estimators under (2.7) without requiring (2.6). 
 

Remark 1. For simplicity, we consider a univariate ix  with support on a closed interval. Chen and Yu 

(2016) show that the procedure extends directly to a h  dimensional vector ,ix  each element of which has 

support on a closed interval. To extend the procedure to a vector ,ix  Chen and Yu (2016) define 

        1 2= , , , ,i i i hix x x  B x B B B  where 
hi

x   is the thh  element of ,ix  for = 1, , .h h   

 
2.3  GMM estimation based on quantile regression imputation 
 

Recall that the population parameter of interest is defined by the estimating equation in (2.2). We define 

a full sample estimator of oθ  by  

    , ,
ˆ = argmin ,A n A n A

θ G θ G θ  (2.14) 

where  

    ,
=1

= , , ,
n

n A i i i
i

w y xG θ g θ  (2.15) 

iw  is defined following (2.12), and = 1, ,i n  index the elements in .A  The estimator defined by (2.15) 

is a a generalized method of moments estimator, where each element of ,n AG  defines a deviation between 

a sample moment and the corresponding population parameter. For instance, if  = ,o iE yθ  then 

   ; = .i i o i oy y g θ θ  Additional examples are provided in the simulation study of Section 5. Because 

iy  is unobserved for nonrespondents, ˆ
Aθ  is unattainable.  

An imputed version of (2.15) is defined by replacing  , ,i iy xg θ  for an unobserved unit i  by an 

estimator of the expected value. From (2.3), an estimator of   , ,y x i iE y xg θ  is  
1

0
ˆ , , ,i iq x d  g θ  

where     ˆˆ ˆ= = .i i iq q x x  
B β  We then define the estimator θ̂  by,  

     ˆ = argmin ,n n


θθ G θ G θ  (2.16) 

where  

         1

0
=1

ˆ= , , 1 , , .
n

n i i i i i i i
i

w y x q x d    G θ g θ g θ  (2.17) 

For specific ig  the minimizer of (2.16) has a closed form expression. For the case in which  = ,o iE yθ  

and θ̂  is the Hájek estimator defined by  

     1

0
=1

ˆ ˆ= 1 .
n

i i i i i
i

w y q x d    θ   

In other situations, a closed form expression may not exist and standard numerical procedures, such as 

Newton-Raphson, can be used to minimize (2.17). In deriving the asymptotic results of Section 3, we 
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assume that oθ  is the unique value such that   , = ,i i oE yg θ 0  which relates to the existence of a unique 

minimum of (2.16). See Fuller (1996, page 252) for a similar condition and a discussion of the theory of 

estimators that minimize a quadratic form. 

In practice, an approximation for the integral is required. We use a midpoint approximation (i.e., Nusser, 

Carriquiry, Dodd and Fuller, 1996). Let the fixed sequence 1 20 < < 1J     be the mid-points of 

J  evenly-spaced sub-intervals of [0, 1].  For non-respondent ,i  construct J  imputed values,  

  * ˆ= , = 1, , ,
jij iy x j J

B β   (2.18) 

where ˆ
jβ  is obtained by minimizing  

j
Q β  in (2.12). We define the estimator ˆ

Jθ  to satisfy  

       , ,
ˆ = argmin ,J n J n J


θθ G θ G θ  (2.19) 

where  

          1 *
,

=1 =1

ˆ:= , = , , 1 , , ,
n J

n J n i i i i i ij i
i j

w y x J y x     
 

 G θ G θ β g θ g θ  (2.20) 

iw  is defined following (2.12), and  
1

ˆ ˆ ˆ= , , .
J 
β β β  The imputation procedure above differs from Chen 

and Yu (2016) in that the midpoint approximation for the integral is used instead of Monte Carlo integration. 

Both the midpoint approximation and Monte Carlo integration are justified by the probability integral 

transform, which relates the expectation to the conditional quantile function, as explained in (2.3). For 

functions with bounded second derivatives, the error in the midpoint approximation is  2 .O J   We also 

prefer the midpoint approximation because in simulations, it reduces the variance of the estimator and 

reduces instability in the variance estimator due to extreme quantiles relative to Monte Carlo simulation. 

Jang and Wang (2015) discuss the potential problem of unstable estimators for extreme quantiles from 

unstructured quantile regression models. 

 
3  Asymptotic distributions and variance estimation 
 

We derive an asymptotic normal distribution for the QRI estimator θ̂  defined in (2.16), although 

the estimator ˆ ,Jθ  defined in (2.19), with a finite number of  J  imputations is necessary in practice. 

This approach of developing theory under an assumption of an infinite number of imputed values has 

been used previously. See, for example, Clayton, Spiegelhalter, Dunn and Pickles (1998) and Robins 

and Wang (2000). The simulations in Section 5 demonstrate that the asymptotic normal distribution 

derived for =J   is a reasonable approximation for the distribution of the estimator constructed with 

finite .J  We outline the main concepts underlying the proofs of lemma 1, lemma 2, and Theorem 1, 

deferring details to Section B of the online supplement https://github.com/emilyjb/Semiparametric-

QRI-Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016). 
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The derivation of the asymptotic distribution of θ̂  proceeds in three main steps. Lemma 1 gives the 

asymptotic distribution of the estimators of the quantile regression coefficients. Lemma 2 presents the 

asymptotic distribution of the estimating equation (2.17). These two lemmas are analogous to lemma 1 and 

lemma 2 of Chen and Yu (2016). Theorem 1 then provides the asymptotic distribution of ˆ.θ  
 

3.1  Asymptotic normality of θ̂  
 

We consider a sequence of samples and finite populations indexed by ,N  where the sample size n    

as .N    To define the regularity conditions, we introduce the notation N  to represent an element of 

the sequence of finite populations with size N  and use the notation “ N ” to indicate that the reference 

distribution is the distribution based on repeated sampling conditional on the finite population of size N . 

For example, ˆ
NE Y    and  ˆ ,NV Y   respectively, denote the conditional expectation and variance of 

the outcome Ŷ  with respect to the randomization distribution generated from repeated sampling from .N  

Similarly, ˆ d

NY Y   a.s., means that Ŷ  converges in distribution to Y  almost surely with respect to the 

process of repeated sampling from the sequence of finite populations as .N    The convergence is with 

probability 1 because N  is a random realization from the superpopulation model (2.1). 

The regularity conditions on the sample design and tuning parameters for the estimator of the B-spline 

model are as follows: 

1. Any variable iv  such that 2 < ,iE v      where > 0,  satisfies,  

    HT 0, a.s.,
d

N Nn v v N V   (3.1) 

where    1 1
HT =1

, = , ,
N

N i i i ii
v v N v I v  = ,lim N NV V  and  HT=N NV nV v   is the 

conditional variance of the Horvitz-Thompson mean, HT ,v  given .N  

2. 1 1Bnn    and  1 0, 1 ,Bn N f
   where Bn  is the expected sample size.  

3. There exist constants 1 ,C 2 ,C  and 3C  such that 1 1
1 20 < < ,B iC n N C     and  

   1 1
3 < a.s.B ij i j i jn C         (3.2) 

4. The value determining the number of interior knots  1
2 3= .p

n BK O n   

5.  =n BO n  for    12 3 1 .p p m      
 

Condition 3 is also used in Fuller (2009a). Condition 3 holds for simple random sampling, where 
1 1 1 1( ) = ( 1) ( 1) 1,ij i j i j n n N N            and for Poisson sampling, where ( ij   

1 1) = 0.i j i j      Fuller (2009a) explains that condition 3 holds for many stratified designs and that the 

designer has the control to ensure condition 3. 

Under assumptions 4-5, Barrow and Smith (1978) show that a *
β  exists that satisfies,  

           
1 2

1*
,sup = ,pa

x M M nq x b x x o K  
 


  B β  (3.3) 
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where   *x 
B β  is the best L  approximation for   ,q x  and    ab x  is a bias of the B-spline 

approximation for the true quantile function, satisfying,     1= .pa
nb x O K
   For details of the form of the 

bias term, see Chen and Yu (2016) and Yoshida (2013). The property (3.3) is used extensively in the 

derivation of lemma 1. 

The proofs of both lemma 1 and lemma 2 use a result given in Theorem 1.3.6 of Fuller (2009b). Because 

of the importance of this theorem to the results of this section, we state this theorem as Fact 1: 
 

Fact 1. (Theorem 1.3.6 of Fuller (2009b)): Suppose  

      11 22
ˆ 0, a.s., and 0, .

d d

N N N oN V N V       (3.4) 

Then,    11 22
ˆ 0, .

d

o N V V     

Note that 11V  in Fact 1 is a fixed limit and not a design variance because the design variance is a random 

function of the finite population in this framework. The condition    11
ˆ 0, a.s.,

d

N N N V     holds 

for a broad class of designs, such as those discussed in Isaki and Fuller (1982). 
 

Lemma 1. Under assumptions 1-5 and for fixed  1 2,ix M M  and  0, 1 ,   

              *ˆ 0, ,
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  *= ,i i iu y x 
 B β  ( ) = < 0 ,u I u   1ˆ= ,n nnNN  1

=1
ˆ = ,

n

ii
N    and  ,y x if q  is the pdf of 

iy  given ix  evaluated at .q  

The main idea of the proof of lemma 1 is to show that the estimator of the quantile regression coefficient 

has a Bahadur representation given in corollary 1 below: 
 

Corollary 1: By the proof of lemma 1, the estimator of the quantile regression coefficient has the following 

Bahadur representation:  

          1 1* * 1

=1

1ˆ = 1 .
n

n
n m m n i i i i p

in n

n n
x u o

K n K N    


      


   

 
β β Ω D D β Ω B


 (3.8) 

The derivation of the Bahadur representation follows the basic approach of Koenker (2005) and Yoshida 

(2013). To account for the complex sample design, condition (3.2) is used to bound sums of covariances 

induced by nontrivial second order inclusion probabilities. For independent random variables from an 

infinite population (as in Chen and Yu (2016), Yoshida (2013) and Koenker (2005)), the corresponding 

covariances are zero. Given the Bahadur representation (3.8), lemma 1 follows from an application of the 

regularity condition in (3.1) and Fact 1 to the elements of the Horvitz-Thompson mean in (3.8). The 1,V   in 

 Σ  essentially plays the role of 11V  in Fact 1 and is the limit of the design variance of the Horvitz-

Thompson mean. The second term in  Σ  is the asymptotic variance of the design-expectation of the 

Horvitz-Thompson mean and plays the role of 22V  in Fact 1. 

Lemma 2 and Theorem 1 require additional regularity conditions about the estimating equation. The 

regularity conditions on the estimation are similar to those in Chen and Yu (2016) and are therefore 

deferred to Section A of the online supplement https://github.com/emilyjb/Semiparametric-QRI-

Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016). 
 

Lemma 2. Under the assumptions of lemma 1 and the regularity conditions provided in Section A of the online 

supplement https://github.com/emilyjb/Semiparametric-QRI-Supplement/blob/master/SupplementToQRI.pdf, 

(Berg and Yu, 2016), 

     , ,
d

n o G on NG θ 0 V θ  (3.9) 

where  

 

      

   

          

              

,

2
,

=1 =1

1

0

1 1
,0

= ,lim

= ,

= ; 1 ; ,

= 1 ; ,
i

G o i o N o
N

N N
ij i j

N i o j o
i j i j

i o i i i o i i i o i ni o

n o j j y j o j n i i

f V

nN

y q x d

E p q x x x u d



  

  
 

   

  










 

  

   







ξ

ξ

V θ ξ θ V θ

V ξ θ ξ θ

ξ θ g θ g θ h θ

h θ g θ B Ω B

 

(3.10)

 



260 Berg and Yu: Semiparametric quantile regression imputation for a complex survey with application to the CEAP 
 

 
Statistics Canada, Catalogue No. 12-001-X 

and  , ;i y i oyg θ  is the partial derivative of  ;i ag θ  with respect to a  evaluated at .iy  

The proof of lemma 2 centers on the Taylor expansion given by  
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(3.11)
 

where  iq x  is between  ˆ iq x  and   ,iq x  and   , ;i y i oq xg θ  denotes the vector of partial 

derivatives of the elements of  , ,i y oag θ  with respect to a  evaluated at   .iq x  By arguments similar to 

those of Chen and Yu (2016),          2
, ; = 1 .i y i o i in g q x q x q x O  θ   Lemma 2 then follows 

from the linear approximation for    ˆ i iq x q x   in lemma 1. 
 

Theorem 1. Under the assumptions of lemmas 1 and 2, the QRI estimator θ̂  defined in (2.16), constructed 

with = ,J   satisfies,    ˆ , ,
d

on N θ θ 0 Σ  where  

              
1 1

= ,o o o G o o o o

 
      
   

Σ Γ θ Γ θ Γ θ V θ Γ θ Γ θ Γ θ  (3.12) 
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By Pakes and Pollard (1989), Theorem 1 is satisfied if the following hold: 

1.      sup = 1 ,n po G θ G θ  

2. For 0,n         0.5
<sup = ,

o n n n o p Bo n


  θ θ G θ G θ G θ  
 

where n  is arbitrarily small. Because of the complex sample design, the proof that these conditions hold 

proceeds in two steps, considering first the deviation    n NG θ G θ  and then the deviation 

    .N G θ G θ  The result then follows from the triangle inequality. 

 
3.2  Variance estimation 
 

We estimate the variance of ˆ
Jθ  using the linearization method (Fuller, 2009b, page 64). We use the 

asymptotic covariance matrix in (3.12) to estimate the variance of ˆ ,Jθ  the estimator of oθ  defined in (2.19), 

constructed with a finite number of imputed values. To estimate   ,G oV θ  a design-consistent variance 

estimator is applied to an estimator of the mean of an estimator of  i oξ θ  defined in (3.10). The estimator 

of  i oξ θ  is obtained by replacing oθ  and *
β  with estimators ˆ

Jθ  and ˆ ,β  respectively.  

The estimator of variance is defined,  

              
1 1
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where the bandwidth ,na   is given by  
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with     and   ,   respectively, the pdf and cdf of a standard normal distribution. See Wei, Ma and 

Carroll (2012) and Koenker (2005) for discussions of (3.15) and (3.16), respectively. 
 

4  Application to Conservation Effects Assessment Project  
 

The cropland component of the Conservation Effects Assessment Project (CEAP) consists of a series of 

surveys meant to measure soil and nutrient loss from crop fields. The first cropland assessment was a 

national survey conducted over the period 2003-2006. Data collection for a second national survey, planned 

for 2015-2016, was on-going at the time of writing this paper. Each of the time periods 2003-2006 and 

2015-2016 is considered one time point for estimation. Data are collected over multiple years (i.e., 2003-

2006 or 2015-2016) for operational reasons, and no unit is in the sample for two years in the same time 

period. Temporal changes of interest are changes between the two time periods, rather than changes between 

two years in the same time period. The temporal structure leads to unbalanced data because some units 

respond in both time periods, some units never respond, and some units respond in only one of the two time 

periods. Providing the data user with a complete, imputed data set with a single set of weights simplifies 

analyses involving more than one time point. 
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We investigate the feasibility of imputation for CEAP using a subset of the data collected during 2003-

2005. We omit the data collected in 2006 because the sample design changed, and we do not have the 

information required to compute sampling weights for the 2006 survey. The data from the 2015-2016 survey 

are not yet collected. This analysis is considered an investigation of the feasibility of using QRI to impute 

missing data in CEAP in the direction of addressing the broader problem of estimation of change over time. 

An understanding of the CEAP sample design requires an understanding of the design of the National 

Resources Inventory (NRI). The NRI monitors status and trends in land use, land cover, and erosion, with 

emphasis on characteristics related to natural resources and agriculture. Primary sampling units in the NRI 

are land areas called segments, which are approximately 160 acres. Each segment contains approximately 

three secondary sampling units, which are randomly selected locations called points. From 1982-1997, the 

same sample of approximately 300,000 segments, referred to as the foundation sample, was revisited every 

five years. The foundation sample is a stratified sample of segments, with a typical sampling rate of 

approximately 4%. See Nusser and Goebel (1997) for details of the design of the NRI foundation sample. 

In 2000, the NRI transitioned to annual sample design. Because revisiting every sampled segment in the 

foundation sample on an annual basis is infeasible, a rotating panel design is used. A subsample of the 

foundation segments, called the core panel, is revisited annually. The core panel is supplemented with a 

rotation panel, which changes each year. In essence, the core and rotation panels are stratified samples of 

the foundation sample. The strata, called sample classes, depend on the characteristics of the NRI segment 

observed in 1982-1997, such as presence of wetlands, cropland, and forest. See Nusser (2006) and Breidt 

and Fuller (1999) for further detail on the NRI annual samples. 

For the Conservation Effects Assessment Project (CEAP), data collectors visit a subset of the NRI points 

that are located in sampled crop fields and collect more detailed information on crop choices and 

conservation practices. The sample for the 2003-2005 CEAP survey essentially consists of segments in the 

NRI core panel, 2002 rotation panel, and 2003 rotation panel that contain at least one cropland point. For 

segments containing more than one cropland point, one cropland point was selected randomly. The selection 

of one point per segment is an effort to improve geographic spread and reduce the number of instances in 

which a farm operator associated with multiple sampled points is selected into the sample, thereby reducing 

the respondent burden. 

Because the first phase sampling rate for the NRI is small  4% ,  we approximate the CEAP sample 

as a probability proportional to size with replacement sample. The selection probabilities for CEAP largely 

reflect the sample design for the NRI. Details of construction of first and second order selection probabilities 

for CEAP are provided in Section C of the online supplement https://github.com/emilyjb/Semiparametric-

QRI-Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016). 

Data collection for crop fields sampled for the CEAP survey consists of multiple components. An 

important component is a farmer interview survey that collects detailed information on farming 

managements and conservation practices. Nonresponse can occur in CEAP if a farmer refuses to participate 

in the interview. 
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Response variables in CEAP are measurements of different types of soil and nutrient loss, obtained from 

a physical process model called the Agricultural Policy Environmental Extender (APEX). The APEX model 

converts data from the farmer surveys as well as information from administrative sources and the NRI to 

numerical measures of erosion. For this study, we consider a measure of soil loss due to sheet and rill erosion 

called RUSLE2, discussed further in Section 4.1. 

The NRI survey provides a convenient source of auxiliary information for imputing CEAP response 

variables. Because the NRI survey data are collected through aerial photographs of sampled segments, 

nonresponse due to refusals does not occur in the NRI. As a consequence, NRI data are available for all 

sampled points in CEAP. Furthermore, the NRI collects data related to land use, conservation practices and 

erosion – characteristics that are expected to be correlated with outputs of the APEX model. As an auxiliary 

variable, we use USLE, a measure of sheet and rill erosion collected in the NRI. 

Domains of interest in CEAP are ten “CEAP production regions”. We focus on estimation of mean 

RUSLE2 for seven states (Iowa, Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin) that comprise 

the majority of the CEAP production region called the Corn Belt. We use semiparametric quantile regression 

to impute missing values for RUSLE2 using USLE as an auxiliary variable for each of these seven states in 

the Corn Belt region. 
 

4.1  Imputation model and procedures 
 

The variable of interest, RUSLE2, is a measure of sheet and rill erosion obtained from the APEX model. 

Because interest is in mean erosion on a per acre basis, the parameter of interest ,  the mean RUSLE2 

erosion in the state, is defined as a ratio by,  

 
 

1
=1

1
= ,

ekm

ik k ki

ek k k

E R D m

E m D m






 
 

 (4.1) 

where ikR  is the RUSLE2 erosion for point i  in segment k  sampled in the period 2003-2005, kD  is the 

area of segment ,k km  is the total number of points in segment ,k  and ekm  is the number of points in 

segment k  that are eligible for the CEAP survey. As discussed above, the period 2003-2005 is considered 

one time point, and no point is sampled more than once in this collection of years. Therefore, each sampled 

unit has one value ikR  for this set of years, and ikR  does not need a subscript of t  for year. 

The RUSLE2 erosion is an advancement of a simpler measure of sheet and rill erosion called USLE. 

The USLE is a product of five numerical indexes associated with slope steepness and length, rainfall, soil 

erodibility, conservation practices, and crop managements. While RUSLE2 is only observed for respondents 

to the CEAP survey, USLE is available from the main NRI sample for all points in the CEAP sample. We 

use the average USLE across years 2003-2005 as the covariate in the imputation model. Specifically, for 

point i  in segment ,k  we define, 
2005

1
=2003

= 3 ,ik tikt
U U   where tikU  is the USLE soil loss in the NRI for 

point i  in segment k  for year .t  

Because the RUSLE2 and USLE are highly skewed, the quantile regression model is applied after 

transforming both ikR  and ikU  by a power of 0.2. The quantile regression model postulated for the 
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superpopulation can be expressed as,    = ,ik ik ikP y x q x  where 0.2= ,ik iky R  and 0.2= .ik ikx U  The 

unknown function  ikq x  is approximated by a linear combination of B-spline basis functions generated 

from .ikx  To define the penalized B-spline, we set = 3,p = 2,m = 16,nK  and = 0.004.  

Because the quantity of interest is erosion on a per acre basis, the estimator ̂  of   defined in (4.1) is a 

ratio of two estimators. That is, 1
2 1

ˆ ˆ ˆ= ,    where 1̂  is an estimator of  1 = ,k ikE D U  and  2 = .kE D  

The estimator of 2  is the Hájek estimator,     1
1 1

2 =1 =1
ˆ = ,

n n

ik k ikk k
D  


    where ik  is the probability 

of selecting point i  in segment k  into the CEAP sample. The estimator 1̂  of 1  is obtained from GMM 

with    5
1 1, = .kg y D y   

 

4.2  Estimates and variance estimates 
 

Table 4.1 contains estimates of average RUSLE2 soil loss based on QRI, along with estimated standard 

errors for seven states in the Corn Belt CEAP region. For comparison, the complete case estimator  ccR  

and corresponding estimated standard error is also provided in Table 4.1. The complete case estimator is 

the ratio of Hájek estimators constructed using only the units that provide a usable response for RUSLE2. 

For each of the seven states, the complete case estimator is larger than the estimator based on the imputed 

data. The imputation procedure reduces the estimator of ,  relative to the complete case estimator, because 

the weighted mean of ikU  among sampled units is smaller than the mean of ikU  among respondents, as 

shown in the last two rows of Table 4.1. 

As expected, the estimated standard error for ̂  is smaller than the estimated standard error for the 

complete case estimator. The ratios of the estimated variances for the complete case estimator to the 

estimated variances of ̂  range from 1.103 for MN to 1.252 for IN. This comparison demonstrates the 

potential for efficiency gain due to the use of imputation. The reduction in estimated standard deviation 

occurs because the imputation procedure uses ikU  for the full sample, while the complete case estimator is 

based only on ikR  for the subset of respondents. 

 
Table 4.1 
Complete-case estimator  ccR  and QRI-GMM estimator  ̂  of mean RUSLE2 soil loss   ,  corresponding 

standard errors, sample sizes   ,n  number of respondents   ,rn  and weighted covariate means for sampled 

units  ˆ
sU  and weighted covariate means among respondents  ˆ

rU  for seven states in the Corn Belt 
 

  IL IN IA MI MN OH WI

ccR 0.3301 0.2994 0.3464 0.3214 0.1741 0.3700 0.5226

 SE ccR 0.0112 0.0179 0.0144 0.0209 0.0068 0.0213 0.0354

̂ 0.3281 0.2901 0.3408 0.3145 0.1646 0.3636 0.4977

 ˆSE  0.0106 0.0160 0.0134 0.0189 0.0063 0.0201 0.0337

n 1,823 1,151 1,492 935 1,649 1,053 662

rn 1,275 751 1,011 585 1,008 698 414

ˆ
rU 4.0775 3.7781 5.2046 1.6029 2.1063 2.1071 4.7586

ˆ
sU 4.0909 3.6107 5.0385 1.5776 1.8973 2.0761 4.2232
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5  Simulations 
 

We construct a simulation study to represent properties of the CEAP data and design. An extended set 

of simulations using the simulation models of Chen and Yu (2016) yields similar results and is not presented 

here for brevity. The objectives of the simulations are to evaluate the variance estimator and to compare 

QRI to nonparametric and fully parametric alternatives. 

The fully parametric imputation procedure is parametric fractional imputation (Kim, 2011). The 

imputation model specified for parametric fractional imputation (PFI) is 0 1= ,i i iy x     where 

 20, .i N    The imputed values for PFI are generated as,  * 2
0 1ˆ ˆ ˆ, ,ij iy N x     where 

 2
0 1ˆ ˆˆ ˆ= , ,   γ   satisfies  ˆ = ,wS γ 0  

   1

=1

= ,
n

w i i i
i

 S γ d  (5.1) 

and     2 2
0 1 0 1 0 1= , , 1 .i i i i i i i iy x y x x y x             d   By incorporating 1

i   in the 

score function (5.1), the estimator is consistent if the population model is a linear model with iid  normally 

distributed errors and either the MAR assumption in (2.7) or (2.6) holds. 

The non-parametric imputation (NPI) procedure is based on Wang and Chen (2009). For NPI, the thj  

imputed value for nonrespondent ,i * ,ijy  is generated from a multinomial distribution with sample space 

 : = = 1 .s s sy I   Specifically,  
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 (5.2) 

where  K   is a normal kernel with bandwidth h  selected by applying the method of Sheather and Jones 

(1991), as implemented in the R function ,dpik  to  : = = 1 .i s sx I   

The QRI procedure is implemented as described in Sections 2-3. To define the penalized B-spline, we 

set = 3,p = 2,m = 16,nK  and = 0.004.  The value of = 0.004  is the median of the values selected 

using the R function “cobbs” across 1,000 samples of a preliminary simulation. To select   using “cobbs”, 

we first use the R function “cobbs” to obtain 
j  for 1 , , .J   The selected   is the minimum of the 

 : = 1, , ,
j

j J   which introduces the least amount of smoothing from among the selected .
j  

In simulations not presented here, we also consider multiple imputation. Modifications to standard 

multiple imputation procedures are needed to produce unbiased estimators for a situation in the sample 

missing at random assumption (2.6) does not hold (Berg et al., 2016; Reiter, Raghunathan and Kinney, 

2006). Because an exploration of the modifications to multiple imputation needed to ensure consistent 

estimation is beyond the scope of this study, we restrict attention to PFI, NPI, and QRI. 

For all three imputation procedures, GMM based on the imputed values is used to estimate the 

parameters. Note that this differs from Wang and Chen (2009), which uses empirical likelihood instead of 
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GMM. The number of imputations for the simulation is = 50.J  The Monte Carlo (MC) sample size 

is 1,000. 

We consider estimation of several parameters:  1 = ,iE y  2 = ,iV y  3 = Cor , ,i iy x 4 =  

  0.65 ,i iE E y x   and  5 = 8 .iP y   With the exception of 5 ,  GMM estimators of these 

parameters satisfy the assumptions required for the theory of Section 3. In particular, the function  ;i g θ  

defining the estimator of  1 2 3 4, , ,     has two continuous derivatives. The estimator of 5  does not fall 

in the framework of Section 3 because  8I a   is a non-smooth function of ;a  however, we evaluate the 

empirical properties of 5̂  defined as  

    
1

1 1 1 *
5

=1 =1 =1

ˆ = 8 1 8 .
n n J

i i i i i ij
i i j

I y J I y    


               
    (5.3) 

For details on the function  ;i g θ  defining the estimators for the simulation, see Section D of the online 

supplement https://github.com/emilyjb/Semiparametric-QRI-Supplement/blob/master/SupplementToQRI.pdf, 

(Berg and Yu, 2016). 
 

5.1  Superpopulation model and design for simulations 
 

The superpopulation model represents four aspects of the CEAP data and survey: (1) the shape of the 

expectation function, (2) the inclusion of a mean-variance relationship, (3) the use of probability 

proportional to size (PPS) with-replacement sampling, and (4) the sample sizes and response rates. The 

specific model for the simulation is  = ,i i iy m x e  where   220, ,i e ie N m x   = 2im x   

  
5
410 1 8exp 5 ,ix    and  Trunc. Norm. 0.5, 0.3 .ix   The sample design is PPS with replacement, 

where the probability of selecting unit i  on a single draw is   1

=1
,

N

i ii
 



    logit = 3 0.33i iz     

0.1 ,iy  Trunc. Norm. 0.5, 0.3 ,iz   and = 50,000.N  The number of draws is = 1,500,n  leading to a 

median sample size of 1,477, where the sample size is the number of unique units in the sample. The first 

and second order selection probabilities corresponding to i  are,  = 1 1 ,n
i i     and = 1ij   

     1 1 1 .
n nn

i j j i             The response indicator  Bernoulli ,i ip   where  logit =ip  

0.5 1.5 ,i ix z  which yields a median response rate of 0.631. 

By the model for iy  given ,ix  the assumption of population missing at random (2.7) holds for this 

simulation. Incorporating iz  in the models for ip  and i  is the approach used in Berg et al. (2016) that 

causes the sample missing at random assumption (2.6) to fail. The variable iz  can be interpreted a design 

variable that is omitted from the imputation model. 
 

5.2  Results 
 

Table 5.1 contains three measures for comparing the QRI estimator to the PFI and NPI estimators. The 

percent relative MC MSE for estimator  PFI, NPIk k   is defined,  

  
     

  
MC MC

MC

ˆ ˆMSE MSE QRI
Pct. Rel. MSE = 100 ,

ˆMSE QRI

k
k

 




 (5.4) 
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where  ˆ k  is the estimator based on imputation procedure .k  The percent relative variance for estimator 

k  is defined,  

  
     

  
MC MC

MC

ˆ ˆVar Var QRI
Pct. Rel. Var = 100 ,

ˆVar QRI

k
k

 




 (5.5) 

for = NPI, PFI.k  The percent of mean squared error due to squared bias is defined by  

                                              
   

  

2

MC

MC

ˆ
Pct. Bias = 100 ,

ˆMSE

E k
k

k

 




 (5.6) 

where = NPI, PFI, QRI.k  The MSE of the QRI estimator is smaller than the MSE of the NPI and PFI 

estimators for all parameters. The PFI estimator is biased because the model underlying the PFI procedure 

does not account for the nonlinearity in the quantile curves or the nonconstant variances. The NPI procedure 

has a relatively large variance for sample sizes such as those obtained in the CEAP survey. The squared MC 

bias of the QRI procedure is less than 0.5% of MC MSE for all parameters. 

The last two columns of Table 5.1 contain the relative bias of the variance estimator and the empirical 

coverage of normal theory 95% confidence intervals. The relative bias of the variance estimator defined as  

                                                  
   

 
MC MC

MC

ˆ ˆˆ
Rel. Bias = ,

ˆ,

E V V

V

 



     (5.7) 

where  MC
ˆˆE V     is the MC mean of the variance estimators and  MC

ˆV   is the MC variance of the QRI 

estimator. The MC relative bias of the variance estimator for the QRI estimator is between -6% and -1%. 

Empirical coverages of normal theory confidence intervals are within 1% of the nominal 95% level. 

 
Table 5.1 
MC properties of estimators and variance estimators for simulation with PPS with replacement sample design. 
Pct. Rel. MSE (5.4): Difference between the MC variance of the PFI or NPI estimator and the MC MSE of the 
QRI estimator, relative to the MC MSE of the QRI estimator. Pct. Rel. Var. (5.5): Difference between the MC 
variance of the PFI or NPI estimator and the MC MSE of the QRI estimator, relative to the MC MSE of the 
QRI estimator. Pct. Bias (5.6): percent of MC MSE of PFI, NPI, and QRI estimators due to squared MC bias. 
Rel. Bias = MC relative bias of variance estimator defined in (5.7). Coverage = MC coverage of 95% confidence 
intervals 
 

 Pct. Rel. MSE Pct. Rel. Var. Pct. Bias Rel. Bias Coverage 
  NPI   PFI   NPI   PFI   NPI   PFI   QRI   QRI   QRI  

1  0.509 1.624 0.211 1.589 0.304 0.041 0.006 -2.386 0.945 

2  3.308 1.882 1.011 -0.151 2.225 1.998 0.002 -1.113 0.951 

3  1.518 5.449 0.979 2.605 0.840 2.999 0.311 -5.772 0.943 

4  515.980 26.752 10.501 12.415 82.101 11.508 0.222 -3.182 0.952 

5  5.879 61.416 5.659 -2.345 0.223 39.510 0.015 – – 
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6  Discussion 
 

QRI is developed for a complex survey setting. Alternative choices of weights are discussed, and a closed 

form variance estimator is provided based on a linear approximation. Consistency and asymptotic normality 

of the estimators are demonstrated under the framework of an infinite number of imputed values. In 

simulations designed to represent the CEAP data, the variance estimator based on the asymptotic 

distribution has a relative bias less than 6% in absolute value and leads to confidence intervals with coverage 

close to the nominal level for finite .J  Further, the estimator based on QRI is more efficient than an 

estimator based on PFI or NPI because QRI provides a reasonable compromise between bias and variance. 

The quantile regression imputation procedure is applied to estimate mean erosion in seven states in the 

midwestern United States using data from the Conservation Effects Assessment Project. The analysis 

demonstrates that QRI presents a viable alternative to weighting adjustments currently used to account for 

nonresponse in CEAP. 

Areas for improvement to QRI include the choice of ,j  the choice of ,ib  refinements to estimation of 

the quantile curves, and variance estimation for non-differentiable  g  functions. Development of 

automated methods to select the nuisance parameters, appropriate for selection of multiple quantiles in a 

complex survey setting, is an area for future research. Estimation of the quantile curves subject to a 

restriction that the estimated curves are non-overlapping, has potential to improve estimation of the 

derivatives needed for the variance estimator. Section E of the online supplement https://github.com/ 

emilyjb/Semiparametric-QRI-Supplement/blob/master/SupplementToQRI.pdf, (Berg and Yu, 2016) 

provides further discussion of areas for improvement. 
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