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Variance estimation under monotone non-response for a 
panel survey 

Hélène Juillard and Guillaume Chauvet1 

Abstract 

Panel surveys are frequently used to measure the evolution of parameters over time. Panel samples may suffer 
from different types of unit non-response, which is currently handled by estimating the response probabilites and 
by reweighting respondents. In this work, we consider estimation and variance estimation under unit non-
response for panel surveys. Extending the work by Kim and Kim (2007) for several times, we consider a 
propensity score adjusted estimator accounting for initial non-response and attrition, and propose a suitable 
variance estimator. It is then extended to cover most estimators encountered in surveys, including calibrated 
estimators, complex parameters and longitudinal estimators. The properties of the proposed variance estimator 
and of a simplified variance estimator are estimated through a simulation study. An illustration of the proposed 
methods on data from the ELFE survey is also presented. 

 
Key Words: Longitudinal estimation; Non-response model; Product sampling design; Response homogeneity groups; 

Simplified variance estimation. 

 
 

1  Introduction 
 

Surveys are not only used to produce estimators for one point in time (cross-sectional estimations), but 

also to measure the evolution of parameters (longitudinal estimations), and are thus repeated over time. In 

this paper, we are interested in estimation and variance estimation for panel surveys, in which measures are 

repeated over time for units in a same sample (Kalton, 2009). Among the panel surveys (also known as 

longitudinal surveys, see Lynn, 2009), cohort surveys are particular cases where the units in the sample are 

linked by a common original event, such as being born on the same year for children in the ELFE survey 

(Enquête longitudinale française depuis l’enfance), which is the motivating example for this work.  

ELFE is the first longitudinal study of its kind in France, tracking children from birth to adulthood (Pirus, 

Bois, Dufourg, Lanoë, Vandentorren, Leridon and the Elfe team, 2010). Covering the whole metropolitan 

France, it was launched in 2011 and consists of more than 18,000 children whose parents consented to their 

inclusion. It will examine every aspect of these children’s lives from the perspectives of health, social 

sciences and environmental health. The ELFE survey suffers from unit non-response, which needs to be 

accounted for by using available auxiliary information, so as to limit the bias of estimators. Though the 

ELFE survey will be used for illustration in this paper, non-response occurs in virtually any panel survey so 

that the proposed methods are of general interest; see for example Laurie, Smith and Scott (1999) for the 

treatment of non-response of the British Household Panel Survey, or Vandecasteele and Debels (2007) for 

the European Community Household Panel.  

Non-response is currently handled by modeling the response probabilities (Kim and Kim, 2007) and by 

reweighting respondents with the inverse of these estimated probabilities, which leads to the so-called 
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propensity score adjusted estimator. A panel sample may suffer from three types of unit non-response 

(Hawkes and Plewis, 2009): initial non-response refers to the original absence of selected units; wave non-

response occurs when some units in the panel sample temporarily do not answer at some point in time, while 

attrition occurs when some units in the panel sample permanently do not answer from some point in time. 

Wave non-response was fairly uncommon in the first waves of the ELFE survey which were at our disposal. 

We therefore simplify this set-up by assuming monotone non-response, where only initial non-response and 

attrition occur.  

There is a vast literature on the treatment of unit non-response for surveys over time, see Ekholm and 

Laaksonen (1991), Fuller, Loughin and Baker (1994), Rizzo, Kalton and Brick (1996), Clarke and Tate 

(2002), Laaksonen and Chambers (2006), Hawkes and Plewis (2009), Rendtel and Harms (2009), 

Laaksonen (2007), Slud and Bailey (2010), Zhou and Kim (2012). Variance estimation for longitudinal 

estimators is considered in Tam (1984), Laniel (1988), Nordberg (2000), Berger (2004), Skinner and Vieira 

(2005), Qualité and Tillé (2008) and Chauvet and Goga (2018), but with focus on the sampling variance 

only. Variance estimation in case of non-response weighting adjustments on cross-sectional surveys is 

considered in Kim and Kim (2007). To the best of our knowledge, and despite the interest for applications, 

variance estimation accounting for non-response for panel surveys has not been treated in the literature, with 

the exception of Zhou and Kim (2012). 

Zhou and Kim (2012) consider the estimation of a mean for a panel survey, in case of monotone non-

response. Instead of using the propensity score adjusted estimator, Zhou and Kim (2012) define an optimal 

propensity score estimator. It is obtained by noting that for any variable of interest observed before time ,t  

the estimator produced at time t  differs from the estimator obtained at the date when the variable was 

observed, which is based on a larger sample. Adjusting on these differences by means of some form of 

calibration leads to the estimator proposed by Zhou and Kim (2012). It makes full use of the information 

collected at previous times, and it is therefore expected to be more efficient than the propensity score 

adjusted estimator. However, a panel survey may include a large number of variables of interest observed 

at several times, and calibrating on a too large number of variables may lead to estimators whose 

performances are worsened (Silva and Skinner, 1997). A careful modeling exercise seems therefore 

necessary before applying the optimal estimator of Zhou and Kim (2012). In this work, we rather focus on 

the propensity score adjusted estimator, which is popular in practice.  

Zhou and Kim (2012) also consider variance estimation for their optimal estimator, under the so-called 

reverse framework of Fay (1992). By viewing the sample obtained at time t  as the result of a two-phase 

process, the first phase being associated to the original sampling design and the second phase to the 

successive non-response steps, it is assumed under the reverse framework that these two phases may be 

reversed. This requires the two-phase process to be strongly invariant as defined by Beaumont and Haziza 

(2016). In this paper, we propose a general variance estimator for the propensity score adjusted estimator, 

for which the strong invariance assumption is not needed. We also extend this variance estimator to account 

for estimation of complex parameters, possibly with calibrated weights, and to cover longitudinal estimators. 
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In each case, a simplified conservative variance estimator, which may be easier to compute for secondary 

users, is also proposed.  

The paper is organized as follows. In Section 2, we first define the notation. A parametric model is then 

postulated, leading to estimated response probabilities and to a reweighted estimator. A variance estimator 

is then derived by following the approach in Kim and Kim (2007), and a simplified version is also proposed. 

They are illustrated in the particular case of the logistic regression model. The proposed variance estimator 

is extended to cover calibrated estimators and complex parameters in Section 3. Longitudinal estimation is 

discussed in Section 4, and the proposed variance estimator is used to cover such cases. The variance 

estimators are compared in Section 5 through a simulation study, and an illustration on the ELFE data is 

proposed in Section 6. We draw some conclusions in Section 7. 

 
2  Correction of non-response and attrition 
 

2.1  Notation and main assumptions 
 

We are interested in a finite population .U  A sample 0s  is first selected according to some sampling 

design   ,p   and we assume that the first-order inclusion probabilities i  are strictly positive for any 

.i U  This first sampling phase corresponds to the original inclusion of units in the sample.  

We consider the case of a panel survey in which the sole units in the original sample 0s  are followed 

over time, without reentry or late entry units at subsequent times to represent possible newborns. We are 

therefore interested in estimating some parameter defined over the population ,U  for some study variable 

ty  taking the value ity  for the unit i  at time .t  The units in the sample 0s  are followed at subsequent times 

= 1, , ,t   and the sample is prone to unit non-response at each time. We note ir
  for the response 

indicator for unit i  at time ,  and s  for the subset of respondents at time .  

We assume monotone non-response resulting in the nested sequence 0 1 ... .ts s s    For 

= 1, , ,t   we note  1= Prip i s s
    for the response probability of some unit i  to be a 

respondent at time .  We assume that the data are missing at random, i.e. the response probability ip   at 

time   can be explained by the variables observed at times 0, , 1,   including the variables of interest, 

see for example Zhou and Kim (2012). Also, we assume that at any time   the units answer independently 

of one another, and we note =ij i jp p p    for the probability that two distinct units i  and j  answer jointly 

at time .  

 
2.2  Reweighted estimator 
 

We are interested in estimating the total   = iti U
Y t y

  at time .t  In practice, the response 

probabilities at each time are unknown and need to be estimated. We assume that at each time   the 

probability of response is parametrically modeled as  
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  = ,i ip f z     (2.1) 

for some known function  , ,f     where iz  is a vector of variables observed for all the units in 1,s   and 
  denotes some unknown parameter. Here and elsewhere, the superscript   will be used when we account 

for non-response at time ,  like for the probability ip   of unit i  to be a respondent at time .  Following 

the approach in Kim and Kim (2007), we assume that the true parameter is estimated by ˆ ,  the solution 

of the estimating equation  

       
1

ln 1 ln 1 0,i i i i i
i s

k r p r p


    

 


   

   (2.2) 

with ik   some weight of unit i  in the estimating equation. Customary choices for these weights include 

= 1ik   and 1= ,i ik     see Fuller and An (1998), Beaumont (2005) and Kim and Kim (2007). 

The estimated response probability at time   is  ˆˆ = , .i ip f z     The propensity score adjusted 

estimator at time ,t  which will be simply called the reweighted estimator in what follows, is defined as  

   1
1

=1

ˆ ˆ ˆ= with = .
ˆ

t

t
it t

t i it
i s i i

y
Y t p p

p







   (2.3) 

Here and elsewhere, the subscript t  will be used when the sample observed at time t  is used for estimation, 

like for  ˆ
tY   which makes use of the sample .ts  We simplify the notation as  ˆ ˆ

t tY t Y  when the total at 

time t  is estimated by using the sample observed at time .t  

 
2.3  Variance computation 
 

Under some regularity assumptions on the response mechanisms and some regularity conditions on the 

 , ’s,p    we obtain from Theorem 1 in Kim and Kim (2007) that we can write  

    1
lin,

ˆ ˆ= ,t t pY Y t O Nn   (2.4) 

where  

       
1

1 1 1 1
lin, 1 1

1ˆ ˆ ˆ= ,
ˆ

t

t
it t t t t t t t t t

t i i i i i it i i i i it t
i s i i i

r
Y t k p p h y k p p h

p p
   



   
 



 
  

 
  

 (2.5) 

and where for any = 1, , t   we denote by ih  the value of    = logiti ih p     evaluated at 

= ,   and  

    
1 1

1

1 1

1
= 1 .

ˆ
i it

i i i i i i
i s i s i i

p y
k p p h h h

p 


      


 



 
 

  
 
 

 (2.6) 

From (2.5), we obtain that  

     lin, 1 1
ˆ ˆ= ,t t tE Y t s Y t   (2.7) 
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with  1
ˆ
tY t  the estimator of  Y t  computed on 1.ts   Using a proof by induction, it follows from (2.4) and 

(2.7) that ˆ
tY  is approximately unbiased for   .Y t  Also, the variance of ˆ

tY  may be asymptotically 

approximated by  

         
0

app lin, 1
=1

ˆ ˆ= .
t

it
t

i s i

y
V Y V E V Y t s 

 


      
   (2.8) 

The first term in the right-hand side of (2.8) is the variance due to the sampling design, that we note as 

 ˆ .p
tV Y  The second term in the right-hand side of (2.8) is the variance due to non-response, that we note 

as  nr ˆ .tV Y  From (2.5), this asymptotic variance is given by  

                                                  nr nr

=1

ˆ ˆ= ,
t

t tV Y E V Y




 
 
  (2.9) 

where 

                          
1

2

nr
1 1

ˆ = 1 .
ˆ

it
t i i i i

i s i i i

y
V Y p p k h

p p

     
  



 



  

 
 

 (2.10) 

We note that for each of its component = 1, , ,t   the term  nr ˆ
tV Y  in (2.10) includes a centering 

term   ,i ik h    which is essentially a prediction of   11 1ˆ
i i i ip p y     by means of regressors .ih  This 

centering is due to the estimation of the response probabilities. Suppressing these centering terms, equations 

(2.9) and (2.10) would lead to the variance of the estimator of  Y t  we would obtain by replacing in (2.3) 

the estimated probabilities by their true values. The variance of this estimator is usually larger than that of 

the reweighted estimator in (2.3); see also Beaumont (2005), equation (5.7) and Kim and Kim (2007), 

equation (17), for the case = 1.t  

 
2.4  Variance estimation 
 

At time ,t  an approximately unbiased estimator for the variance due to the sampling design  ˆp
tV Y  is  

   1
,

1ˆ ˆ = ,
ˆ

t

ij jtitp
t t t

i j s ij ij i j

yy
V Y

p  



  (2.11) 

where 1

=1
ˆ ˆ ,

tt
ij ijp p


    and where ˆ ˆ=ij ip p   if = ,i j  and ˆ ˆ ˆ=ij i jp p p    otherwise. Following equation 

(25) in Kim and Kim (2007),  nr ˆ
tV Y  may be approximately unbiasedly estimated at time t  by  

                                                            nr nr

=1

ˆ ˆ ˆ ˆ=
t

t t t tV Y V Y


  (2.12) 

where 

                                     
2

nr
1

ˆ ˆ1 ˆˆ ˆ ˆ= ,
ˆ ˆ

t

i i it
t t i i tt

i s i i i

p p y
V Y k h

p p

 
   

  
 



 
 

 



 (2.13) 

                                                                  ˆ ˆ= , ,i ih h z   (2.14) 
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   

1

1

ˆ ˆ ˆ1 1ˆ ˆ ˆˆ = .
ˆ ˆ

t t

i i i it
t i i i it t

i s i si i i

p p p y
k h h h

p p

  
    






 
 

   
 
  
 


 (2.15) 

This leads to the global variance estimator at time t   

                                                                   nrˆ ˆ ˆ ˆ ˆ ˆ= .p
t t t t t tV Y V Y V Y  (2.16) 

A simplified estimator of the variance due to non-response is obtained by ignoring the prediction terms 

 ˆ ˆ
i i tk h  


 for each of the = 1, , t   variance components. After some algebra, this leads to the 

simplified variance estimator  

                                                     
 

21
nr
, simp 21

ˆ1ˆ ˆ = .
ˆt

t
i it

t t t
i s ii

p y
V Y t

p 





 


 
  (2.17) 

The main advantage of this simplified variance estimator is that it only requires the knowledge of the 

estimated response probabilities. On the other hand, the computation of the variance estimator in (2.12) 

requires the knowledge of the response models used at all times. The simplified variance estimator is 

therefore of particular interest for secondary users of the survey data, for which the estimated response 

probabilities may be the only available information related to the response modeling. This simplified 

variance estimator will tend to overestimate the variance due to non-response of  ˆ
tY  if the prediction term 

 i ik h    partly explains   11 1ˆ .i i i itp p y     

 
2.5  Application to the logistic regression model 
 

In the particular case when a logistic regression model is used at each time ,  the model (2.1) may be 

rewritten as  

    logit = .i ip z    (2.18) 

We obtain ˆ = ,i ih z   and the estimator for the variance due to non-response is given by (2.12), with  

      
2

nr
1

ˆ ˆ1ˆ ˆ ˆ= ,
ˆ ˆ

t

i i it
t t i i tt

i s i i i

p p y
V Y k z

p p

 
   

  
 



 
 

 
 

 (2.19) 

                       
   

1

1

ˆ ˆ ˆ1 1
ˆ = .

ˆ ˆ
t t

i i i it
t i i i it t

i s i si i i

p p p y
k z z z

p p

  
    






 
 

   
 
  
 

 (2.20) 

If the reweighted estimator is computed at time = 1,t  the estimator in (2.12) for the variance due to 

non-response may be rewritten as  

                                              
1

2

1nr 1 1 1 1
1 1 11

ˆ ˆ ˆˆ= 1 .
ˆ
i

i i i
i s i i

y
V Y p k z

p





  

 
 

 (2.21) 
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If the reweighted estimator is computed at time = 2,t  the estimator in (2.12) for the variance due to 

non-response may be rewritten as  

 

     

   

2

2

21
2nr 1 1 1

2 2 22 1

2

22 2 2 2
21 2

ˆ1ˆ ˆ ˆ=
ˆ ˆ

ˆˆ1 .
ˆ ˆ

i i
i i

i s i i i

i
i i i

i s i i i

p y
V Y k z

p p

y
p k z

p p











 
 

 


   

 









 

(2.22)

 

In practice, the model of Response Homogeneity Groups (RHG) is often assumed when correcting for 

unit non-response. Under this model, it is assumed that at each time = 1, , ,t   the sub-sample 1s   may 

be partitioned into  1C    groups  1, = 1, , 1 ,cs c C    such that the response probability ip   is 

constant inside a group. This model is a particular case of the logistic regression model in (2.18), obtained 

with  

      11
1 1= 1 , , 1 ,C

iz i s i s 
 


     

 (2.23) 

and the variance due to non-response is estimated accordingly. Explicit formulas are given in Appendix. 

 
3  Calibration and complex parameters 
 

In most surveys, a calibration step is used to obtain adjusted weights which enable to improve the 

accuracy of total estimates. Such calibrated estimators are considered in Section 3.1. Also, more complex 

parameters than totals are frequently of interest, and a linearization step can be used for variance estimation. 

This is the purpose of Section 3.2. The estimation of complex parameters with calibrated weights is treated 

in Section 3.3. In each case, explicit formulas for variance estimation and simplified variance estimation are 

derived, and the bias of the simplified variance estimator is discussed. 

 
3.1  Variance estimation for calibrated total estimators 
 

Assume that a vector ix  of auxiliary variables is available for any unit ,ti s  and that the vector of 

totals X  on the population U  is known. Then an additional calibration step (Deville and Särndal, 1992) is 

usually applied to ˆ .tY  It consists in modifying the weights   11 1ˆ= t
ti i id p    to obtain calibrated weights 

tiw  which enable to match the real total ,X  in the sense that  

 = .
t

ti i
i s

w x X

  (3.1) 

The new calibrated weights are chosen to minimize a distance function with the original weights, while 
satisfying (3.1). This leads to the calibrated estimator  

 ˆ = .
t

wt ti it
i s

Y w y

  (3.2) 

The estimated residual for the weighted regression of ity  on ix  is denoted by  
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                                                               ˆ=it it t ie y b x  (3.3) 

with 

                                                                
1

1 1

1 1ˆ = .
ˆ ˆ

t t

t i i i itt t
i s i si i i i

b x x x y
p p 



 
 




 
   (3.4) 

Replacing in (2.11) the variable ity  with ite  yields the estimator of the variance due to the sampling design  

                                                        1
,

1ˆ ˆ = .
ˆ

t

ij jtitp
t wt t

i j s ij ij i j

ee
V Y

p  



  (3.5) 

Similarly, replacing in (2.12) the variable ity  with ite  yields the estimator of the variance due to the non-

response  

                                                          
2

nr
1

=1

ˆ ˆ1 ˆˆ ˆ ˆ=
ˆ ˆ

t

t
i i it

t wt i i tet
i s i i i

p p e
V Y k h

p p

 
  

 



 



 
 

 



 (3.6) 

                                                                 
1

1

ˆ ˆ ˆ1 1ˆ ˆ ˆˆ = .
ˆ ˆ

t t

i i i it
te i i i it t

i s i si i i

p p p e
k h h h

p p

  
    






 
 

   
 
  
 


 (3.7) 

The global variance estimator for ˆ
wtY  is  

                                                            nrˆ ˆ ˆ ˆ ˆ ˆ= .p
t wt t wt t wtV Y V Y V Y  (3.8) 

The simplified estimator of the variance due to non-response is  

                                                  
 

21
nr
, simp 21

ˆ1ˆ ˆ = .
ˆt

t
i it

t wt t
i s ii

p e
V Y

p 





 


 
  (3.9) 

Here again, this simplified variance estimator ignores the prediction terms  ˆ ˆ .i i tek h  


 If the underlying 

calibration model is appropriate, then the explanatory power of ˆ
ih  for ite  is expected to be small, as well 

as the bias of the simplified variance estimator. On the other hand, if there remains in ite  some significant 

part of ity  that may not been explained by ,ix  the bias of the simplified variance estimator may be non-

negligible. This may occur in case of domain estimation, when the calibration variables do not include any 

auxiliary information specific of the domain. 

 
3.2  Variance estimation for complex parameters 
 

We may be interested in estimating more complex parameters than totals. Suppose that the variable of 

interest ity  is q  multivariate, and that the parameter of interest is     =t f Y t  with  f   a known 

function. At time ,t  substituting ˆ
tY  into  t  yields the plug-in estimator  ˆ ˆ= .t tf Y  

The estimated linearized variable of  t  is  

   ˆ= ,it t itu f Y y


 (3.10) 
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with  ˆ
tf Y  the q  vector of first derivatives of f  at point ˆ .tY  Replacing in (2.11) the variable ity  with 

itu  yields the estimator of the variance due to the sampling design  

   1
,

1ˆˆ = .
ˆ

t

ij jtitp
t t t

i j s ij ij i j

uu
V

p


  



  (3.11) 

Similarly, replacing in (2.12) the variable ity  with itu  yields the estimator of the variance due to the non-

response  

                                   
2

nr
1

=1

ˆ ˆ1ˆ ˆˆ ˆ=
ˆ ˆ

t

t
i i it

t t i i tt
i s i i i

p p u
V k h

p p

 
  

 


 
 



 
 

 



 (3.12) 

 
   

1

1

ˆ ˆ ˆ1 1ˆ ˆ ˆˆ = .
ˆ ˆ

t t

i i i it
t i i i it t

i s i si i i

p p p u
k h h h

p p

  
    
 





 
 

   
 
  
 


 (3.13) 

The global variance estimator for ˆ
t  is  

          nrˆ ˆ ˆˆ ˆ ˆ= .p
t t t t t tV V V    (3.14) 

The simplified estimator of the variance due to non-response is  

  
 

21
nr
, simp 21

ˆ1ˆˆ = .
ˆt

t
i it

t t t
i s ii

p u
V

p








 


 
  (3.15) 

The bias of this simplified variance estimator will depend on the explanatory power for ˆ
ih  on the linearized 

variable .itu  

 
3.3  Variance estimation for complex parameters under calibration 
 

The calibrated weights tiw  may be used to obtain an estimator of the parameter   .t  Substituting ˆ
wtY  

into     =t f Y t  yields the calibrated plug-in estimator  ˆ ˆ= .wt wtf Y  To obtain a variance estimator for 
ˆ ,wt  we first compute the estimated linearized variable   ˆ=it t itu f Y y


 and take  

                                                        ˆ=it it t ie u b x   (3.16) 

with 

               
1

1 1

1 1ˆ = .
ˆ ˆ

t t

t i i i itt t
i s i si i i i

b x x x u
p p  



 
 




 
   (3.17) 

Replacing in (2.11) the variable ity  with ite  yields the estimator of the variance due to the sampling design  

                                                  1
,

1ˆˆ = .
ˆ

t

ij jtitp
t wt t

i j s ij ij i j

ee
V

p


  



  (3.18) 

Similarly, replacing in (2.12) the variable ity  with ite  yields the estimator of the variance due to the non-

response  
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      
2

nr
1

=1

ˆ ˆ1ˆ ˆˆ ˆ=
ˆ ˆ

t

t
i i it

t wt i i tet
i s i i i

p p e
V k h

p p

 
   

 


 
 



 
 

 



 (3.19) 

                   
   

1

1

ˆ ˆ ˆ1 1ˆ ˆ ˆˆ = .
ˆ ˆ

t t

i i i it
te i i i it t

i s i si i i

p p p e
k h h h

p p

  
    

 




 
 

   
 
  
 


 (3.20) 

The global variance estimator for ˆ
wt  is  

                                                                    nrˆ ˆ ˆˆ ˆ ˆ= .p
t wt t wt t wtV V V    (3.21) 

The simplified estimator of the variance due to non-response is  

                                                          
 

21
nr
, simp 21

ˆ1ˆˆ = .
ˆt

t
i it

t wt t
i s ii

p e
V

p








 


 
  (3.22) 

Since the variable ite  is obtained as the residual in the regression of the linearized variable itu  on the 

calibration variables ,ix  the explanatory power for ˆ
ih  on ite  is expected to be small in practice, and the 

bias of the simplified variance estimator is expected to be small as well.  

 
4  Longitudinal estimators 
 

We may be interested in a change in parameters, such as  

      = ,u t Y t Y u    (4.1) 

the difference between the totals of a variable of interest measured at two different times < .u t  Since the 

variable iuy  is measured on all sub-samples us   for = , , ,u u t   there are several possible estimators for 

  .u t   For = , , ,u u t   we denote by  

   1 1

ˆ =
ˆ ˆ

t u

it iu
u t t u

i s i si i i i

y y
u t

p p 
   

     (4.2) 

the estimator which makes use of ts  for the estimation of   ,Y t  and of us   for the estimation of   .Y u  The 

case =u u  corresponds to the estimation of  Y u  on the largest available sub-sample, .us  The case 

=u t  corresponds to the estimation of  Y u  and  Y t  on the common sub-sample .ts  

In the context of full response, several authors have recommended the estimator  ˆ
tt u t   which 

makes use of the common sample only, if the variables uiy  and tiy  are strongly positively correlated; see 

Caron and Ravalet (2000), Qualité and Tillé (2008), Goga, Deville and Ruiz-Gazen (2009), Chauvet and 

Goga (2018). In our context, this choice may be heuristically justified as follows. For < ,u t  and by 

conditioning on the sub-sample ,us   we obtain  

   
1 1

ˆ ,
ˆ ˆ

tu

it iu it
u t uu t

i s i si i i i

y y y
V u t V EV s

p p 

  
 

   
     

  
   (4.3) 
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    11

ˆ .
ˆ ˆ

tu

it iu it iu
tt utu

i s i si i i i

y y y y
V u t V EV s

p p 


 

    
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  
   (4.4) 

In equations (4.3) and (4.4), the first term in the right-hand side is identical. Since the variables iuy  and ity  

are expected to be positively correlated, the difference it iuy y  is expected to be smaller than .ity  

Therefore, the estimator  ˆ
tt u t   based on the common sample is expected to be more efficient in terms 

of variance. The results of a small simulation study in Section 5.2 support this heuristic reasoning. 

Therefore, we focus only in this Section on the estimator  ˆ
tt u t   for the estimation of   .u t   As 

pointed out by a Referee, and following the approach in Zhou and Kim (2012), we may obtain a gain in 

efficiency by using the full information on ,us  namely by calibrating the weights   11ˆ t
i ip   on the 

estimator ˆ .uY  

Replacing in (2.11) the variable ity  with it iuy y  yields the estimator of the variance due to the 

sampling design  

       
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,
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 
    (4.5) 

Similarly, replacing in (2.12) the variable ity  with it iuy y  yields the estimator of the variance due to the 

non-response  
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 (4.6) 

with  
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 


 (4.7) 

The global variance estimator for  ˆ
tt u t   is  

         nrˆ ˆ ˆˆ ˆ ˆ= .p
t tt t tt t ttV u t V u t V u t        (4.8) 

Variance estimation for measures of change is also considered in Berger (2004), Qualité and Tillé (2008), 

Goga et al. (2009), Chauvet and Goga (2018), among others.  

The simplified estimator of the variance due to non-response is  

   
 
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nr
, simp 21
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ˆt
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i it iu
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 
  (4.9) 

If the variables ity  and iuy  are strongly positively correlated, the bias of the simplified variance estimator 

is expected to be small. 
 



280 Juillard and Chauvet: Variance estimation under monotone non-response for a panel survey 
 

 
Statistics Canada, Catalogue No. 12-001-X 

5  A simulation study 
 

In this section, several artificial populations are generated according to the model described in 

Section 5.1. In Section 5.2, we consider several estimators for a change between totals, which illustrates the 

heuristic reasoning in Section 4. A Monte Carlo experiment is presented in Section 5.3, and several variance 

estimators for estimating a total, a ratio or a parameter change are compared. The results from Tables 5.1 

and 5.2 are readily reproducible using the R code provided in the Supplementary Material. 

 
5.1  Simulation set-up 
 

We consider seven populations of size 10,000, each containing three variables of interest 1,iy 2iy  and 

3iy  observed at times = 1, 2t  and 3, respectively. The variables of interest are generated according to the 

superpopulation model  

 0
1 1= ,a b

i ai bi iy x x u       (5.1) 

                                                       2 1 2= ,i i iy y u   (5.2) 

                                                       3 2 3= .i i iy y u   (5.3) 

The auxiliary variables aix  and bix  are independently generated from a Gamma distribution with shape 

and scale parameters 2 and 1. Two auxiliary variables cix  and ,dix  not related to the variables of interest, 

are generated similarly. The variables 1,iu 2iu  and 3iu  are independently generated according to a standard 

normal distribution. We use 0 = 10, = = 5a b   and = 10,  which leads to a coefficient of 

determination  2R  in model (5.1) approximately equal to 0.50. The parameter   is set to 0, 0.2, 0.4, 0.6, 

0.8, 1.0 and 1.2 for populations 1 to 7, respectively.  

For each population, a simple random sample 0s  of size =n 1,000 is selected. Three non-response 

phases are then successively simulated. At each phase = 1, 2, 3,  the sub-sample of respondents s  is 

obtained by Poisson sampling with a response probability ip   for unit ,i  defined as  

   0logit = .a b
i ai bip x x        (5.4) 

We use 0 = 1   at each phase = 1, 2, 3.  For = 1,  we use 1 1= =a b  0.60, which corresponds 

to an average response rate of 0.75. For = 2, 3,  we use = =a b   0.75, which corresponds to an 

average response rate of 0.81. Inside each sub-sample ,s  the estimated response probabilities ˆ
ip   are 

obtained by means of an unweighted logistic regression. 

 
5.2  Comparison of estimators for a difference of totals 
 

In this section, we are interested in comparing the accuracy of two estimators for a difference of totals 

 u t   for = 1u  and = 2,t  for = 1u  and = 3,t  and for = 2u  and = 3.t  We consider the 

estimator  ˆ ,ut u t   which makes use of the whole appropriate sub-samples for variables iuy  and ,ity  
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and the estimator  ˆ ,tt u t   which makes use of the common sub-sample only. These two estimators 

are compared through the relative difference (RD) of their variances, which are defined as follows:  

  
     

  
ˆ ˆ

RD = 100 .
ˆ

ut tt

tt

V u t V u t
u t

V u t

    
 

 
 (5.5) 

The true variances are replaced by their Monte Carlo approximation, obtained by repeating =B 100,000 

times the sample selection and the non-response phases.  

The results are presented in Table 5.1. A positive RD indicates that the use of the common sample only 

leads to a more accurate estimator. As could be expected, the RD increases in all cases with ,  that is, when 

the correlation between ity  and iuy  increases. For = 1u  and = 2,t  and for = 2u  and = 3,t  the 

estimator  ˆ
tt u t   is more accurate for   greater than 0.6. For = 1u  and = 3,t  ˆ

tt u t   is more 

accurate for   greater than 0.8. 

 
Table 5.1 
Relative Difference (RD) between two estimators for a difference of totals 
 

   RD 1 2   RD 1 3   RD 2 3  

0.0 -12 -27 -13 
0.2 -09 -25 -11 
0.4 -04 -20 -03 
0.6 05 -09 11 
0.8 17 11 39 
1.0 30 33 83 
1.2 40 46 127 

 
5.3  Performances of the variance estimators 
 

In this section, we consider the artificial population 5  = 0.8  generated as described in Section 5.1. 

The sample selection by means of simple random sampling of size =n 1,000 and the three non-response 

phases are applied =B 5,000 times. We are interested in evaluating the variance estimators and the 

simplified variance estimators, in case of estimating a total, a ratio or a change in totals.  

As for the total   ,Y t  we consider at each time = 1, 2, 3,t  three estimators. The estimator ˆ
tY  makes 

use of the weights   11 1ˆ= .t
ti i id p    The estimator ˆ

wtY  makes use of the weights ,iw  obtained by 

calibrating the weights tid  on the population size and on the totals of the auxiliary variables aix  and .bix  

The estimator ˆ
wtY   makes use of the weights ,iw  obtained by calibrating the weights tid  on the population 

size and on the totals of the auxiliary variables cix  and .dix  The working model is therefore well-specified 

for ˆ ,wtY  but not for ˆ .wtY   The proposed variance estimator for ˆ
tY  is obtained from equation (2.16), and the 

simplified variance estimator is obtained by plugging in (2.16) the simplified variance estimator for non-

response given in (2.17). The proposed variance estimators for ˆ
wtY  and ˆ

wtY   are obtained from equation 

(3.8), and the simplified variance estimators are obtained by plugging in (3.8) the simplified variance 

estimator for non-response given in (3.9).  
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We are also interested in estimating the ratio      = 1R t Y t Y  for = 2, 3.t  At each time ,t  we 

consider three estimators. The estimator ˆ
tR  makes use of the weights .id  The proposed variance estimator 

is obtained from equation (3.14), by using the estimated linearized variable    1

1 1
ˆ ˆ= .it ti t iu Y y R y


  The 

simplified variance estimator is obtained by plugging in (3.14) the simplified variance estimator for non-

response given in (3.15). The estimators ˆ
wtR  and ˆ

wtR   make use of the calibrated weights iw  and .iw  The 

proposed variance estimators are obtained from equation (3.21). The simplified variance estimators are 

obtained by plugging in (3.21) the simplified variance estimator for non-response given in (3.22). 

Finally, we are interested in estimating the change in totals  1 t   for = 2, 3.t  At each time ,t  we 

consider three estimators. The estimator  ˆ 1tt t   makes use of the weights .id  The proposed variance 

estimator is obtained from equation (4.8), and the simplified variance estimator is obtained by plugging in 

(4.8) the simplified variance estimator for non-response given in (4.9). The estimators  ,
ˆ 1tt w t   and 

 ,
ˆ 1tt w t   make use of the calibrated weights iw  and .iw  The proposed variance estimators are 

obtained from equation (4.8), by replacing it iuy y  by the estimated residual for the weighted regression 

of it iuy y  on the calibration variables. The simplified variance estimators are obtained by plugging in 

(4.8) the simplified variance estimator for non-response given in (4.9). 

For a proposed variance estimator ˆ,V  we computed the Monte Carlo Percent Relative Bias  

   
 1

=1
mc

ˆ
ˆRB = 100

B b

b
B V V

V
V

 
 

  

where the global variance V  was approximated through an independent set of 100,000 simulations. To 

evaluate the contribution of some component ˆ
aV  into the variance estimator ˆ,V  we computed the 

contribution (in percent)  

                                             
 

 

1
=1

mc
1

=1

ˆ
ˆCONTR = 100 .

ˆ

B b
aB b

a B b
B b

V
V

V
 


  

To evaluate the simplified variance estimator for the non-response nr
simp

ˆ ,V  we computed the Monte Carlo 

Percent Relative Bias  

    
 1 nr

simpnr =1
mc simp nr

ˆ
ˆRB = 100 ,

B b

b
B V V

V
V

 
 

  

where the variance nrV  due to non-response was approximated through an independent set of 100,000 

simulations.  

The simulation results are presented in Table 5.2. The proposed variance estimator is almost unbiased in 

all cases. As could be expected, the contribution of the variance due to the sampling design decreases with 

time, as the number of respondents decreases and as the variance due to non-response becomes larger. The 

simplified variance estimator is highly biased for the variance due to non-response in case of ˆ .tY  The bias 

decreases quickly with time, but remains large at time = 3.t  The simplified variance estimator is almost 

unbiased for a calibrated estimator when the working model is adequately specified, but is severely biased 
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otherwise. This is consistent with our reasoning in Section 3.1. The simplified variance estimator is almost 

unbiased for the three estimators of the ratio, and for the calibrated estimators of the change in totals. In 

case of the non-calibrated estimator for the change in totals, the bias can be as high as 30%. 

 

Table 5.2 
Relative bias of a global variance estimator, relative contribution to the estimators of variance components and 
relative bias of a simplified variance estimator for the variance due to non-response for the estimation of a total, 
a ratio or a change in totals with three sets of weights 
 

  = 1t  = 2t  = 3t  = 1t  = 2t  = 3t  = 1t  = 2t  = 3t  

 ˆ
tY  ˆ

wtY  ˆ
wtY   

 mc
ˆRB V   0 -1 -2 -1 -1 -2 -1 -1 -3 

 mc
ˆCONTR p

tV   81 57 35 69 49 32 80 56 35 

 nr1
mc

ˆCONTR tV   19 19 13 31 22 15 20 18 13 

 nr 2
mc

ˆCONTR tV   - 25 18 - 28 19 - 25 17 

 nr3
mc

ˆCONTR tV   - - 34 - - 34 - - 34 

 nr
mc , simp

ˆRB tV   559 188 80 0 -1 -2 83 34 15 

 ˆ
tR  ˆ

wtR  ˆ
wtR   

 mc
ˆRB V   - 0 -2 - -1 -2 - -1 -2 

 mc
ˆCONTR p

tV   - 49 32 - 49 32 - 50 33 

 nr1
mc

ˆCONTR tV   - 22 15 - 22 15 - 22 15 

 nr 2
mc

ˆCONTR tV   - 28 19 - 28 19 - 28 19 

 nr3
mc

ˆCONTR tV   - - 34 - - 34 - - 34 

 nr
mc , simp

ˆRB tV   - 0 0 - -1 -2 - -1 -1 

  ˆ 1tt t    ,
ˆ 1tt w t    ,

ˆ 1tt w t   

 mc
ˆRB V   - 0 -2 - 0 -2 - -1 -3 

 mc
ˆCONTR p

tV   - 50 33 - 49 32 - 50 33 

 nr1
mc

ˆCONTR tV   - 22 14 - 22 15 - 22 14 

 nr 2
mc

ˆCONTR tV   - 28 18 - 28 19 - 28 18 

 nr3
mc

ˆCONTR tV   - - 34 - - 34 - - 34 

 nr
mc , simp

ˆRB tV   - 19 30 - -1 -2 - 3 5 

 
6  Illustration 
 

In this section, we aim at illustrating our results on a real data set from the ELFE survey. The population 

of inference consists of infants born in one of the 544 French maternity units during 2011, except very 
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premature infants. Our illustration is meant to mimic as closely as possible the methodology of the ELFE 

survey. In particular, the modeling of attrition at each time is performed with variables available at baseline 

as explanatory variables only. As pointed out by the Associate Editor, under the MAR assumption, the 

variables of interest measured at any times < t  may also have been used to model attrition between times 

1t   and .t  

An original sample 0s  of about 35,600 infants was originally selected when the babies were just a few 

days old and were still at the maternity unit. The sample was selected using a cross-classified sampling 

design (Skinner, 2015; Juillard, Chauvet and Ruiz-Gazen, 2016). A sample of days and a sample of 

maternity units were independently selected, and both sample selections may be approximated by stratified 

simple random sampling (STSI). The sample consisted in all the infants born during one of the 25 selected 

days in one of the 320 selected maternity units.  

Among the 35,600 infants originally selected, a total of 18,329 face-to-face interviews were completed 

with their families, which represents a response rate of 51%. This led to the subsample 1s  after accounting 

for non-response. The weights at time = 1t  were computed on the basis of the original sampling weights, 

adjusted in two steps. First, response probabilities were estimated by means of a model of Response 

Homogeneity Groups (RHGs), with 20 RHGs defined by using a logistic regression model with explanatory 

variables Age of the mother, Gemellary identity and Season of birth. Then, a calibration by means of the 

raking ratio method was performed on the binary variables Born within marriage, Immigrant mother and 

Gemellary identity.  

When the children reached the age of two months, the parents had the first phone interview with a 

response rate of 87%. This leads to the subsample 2 .s  The weights at time = 2t  were computed on the 

basis on the weight obtained at time = 1,t  with a two-step adjustment. First, response probabilities were 

estimated by means of 20 RHGs, defined by using a logistic regression with explanatory variables Age of 

the mother, Mother nationality and Father present at childbirth. Then, a calibration by the raking ratio 

method was performed on the same calibration variables as at time = 1.t  

When the children were one year old, the parents were contacted by phone with a response rate of 77%. 

This led to the subsample 3 .s  The weights at time = 3t  were computed on the basis on the weights 

obtained at time = 2,t  with a two-step adjustment similar to that realized at time = 2.t  

We considered three variables of interest: Breastfeeding exclusivity at the childbirth, at two month, at 

one year. For each of these variables, we computed the estimator ˆ
tR  and the calibrated estimator ˆ

wtR  for 

the percentage  R t  of breastfeeding among all the children at time ,t  and the associated variance 

estimators. We also computed the estimated coefficient of variation (in percent), defined as  

     ˆ ˆ
ˆCV = 100 .

ˆ
t t

t t

t

V Y
Y

Y
  (6.1) 

For each component ˆ
taV  in the estimated variance ˆ ,tV  we computed its contribution (in percent) defined as  
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  
ˆ ˆ

ˆCONTR = 100 .
ˆ

ta t
ta

t

V V
V

V


  (6.2) 

We also computed the simplified variance estimator for non-response nr
, simp

ˆ ,tV  and the relative difference (in 

percent) with the approximately unbiased variance estimator nrV̂  defined as  

            
nr nr
, simpnr

, simp nr

ˆ ˆ
ˆRD = 100 .

ˆ
t t

t

t

V V
V

V


  (6.3) 

The results are given in Table 6.1. As observed in the simulation study, the RD of the simplified variance 

estimator for non-response is negligible in all cases. 

 
Table 6.1 
Estimates for a ratio, variance estimates, coefficient of variation, relative contributions of variance components 
and relative difference of a simplified variance estimator for a variable in the ELFE survey 
 

Breastfeeding = 1t  = 2t  = 3t  = 1t  = 2t  = 3t  
exclusivity maternity 2 months 1 year maternity 2 months 1 year 

 without calibration with calibration 

 ˆ %tR  59.0 30.6 3.3 59.4 31.0 3.4 

 ˆ ˆ
tV R  1.34E-05 1.50E-05 2.58E-06 1.28E-05 1.48E-05 2.60E-06 

   ˆ ˆCV %tY  0.6 1.3 4.8 0.6 1.2 4.7 

 ˆCONTR p
tV  31 34 24 28 34 25 

 nr1ˆCONTR tV  69 51 42 72 51 41 

 nr 2ˆCONTR tV  - 15 13 - 15 13 

 nr 3ˆCONTR tV  - - 21 - - 21 

 nr
, simp

ˆRD tV  2 2 0 1 2 0 

 
7  Conclusion 
 

In this paper, we considered variance estimation accounting for weighting adjustments in panel surveys. 

We proposed both an approximately unbiased variance estimator and a simplified variance estimator for 

estimators of totals, complex parameters and measures of change, which covers most cases that may be 

encountered in practice. Our simulation results indicate that the proposed variance estimator performs well 

in all cases considered. The simplified variance estimator tends to overestimate the variance of the expansion 

estimator for totals, and to overestimate the variance for calibrated estimators of totals when the calibration 

variables lack of explanatory power for the variable of interest. However, the simplified variance estimator 

performs well for the estimation of ratios and change in totals with calibrated weights, even if the calibration 

model is not appropriate for the study variable.  



286 Juillard and Chauvet: Variance estimation under monotone non-response for a panel survey 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The assumption of independent response behaviour is usually not tenable for multi-stage surveys, since 

units within clusters tend to be correlated with respect to the response behaviour. In this context, estimation 

of response probabilities based upon conditional logistic regression in the context of correlated responses 

has been studied by Skinner and D’Arrigo (2011), see also Kim, Kwon and Park (2016). Extending the 

present work in the context of correlated response behaviour is a challenging problem for further research. 

 
Acknowledgements 
 

We thank the Editors, an Associate Editor and the referees for useful comments and suggestions which 

led to an improvement of the paper. 

 
Appendix 

 
Estimation of the variance due to non-response for Response Homogeneity 
Groups 
 

We consider the model of Response Homogeneity Groups introduced in Section 2.5. Recall that this 

model may be summarized as follows: at each time = 1, , ,t   the sub-sample 1s   is partitioned into 

 1C    groups  1, = 1, , 1 .cs c C    The response probabilities are assumed to be constant within 

the groups.  

This model is equivalent to the logistic regression model in (2.18), with  

     11
1 1= 1 , , 1 .C

iz i s i s 
 


     

 (A.1) 

The equation (2.2) leads to the estimated response probabilities  

     1

1

1
ˆ = for .

c

c

i ii s c
i

ii s

k r
p i s

k




 

















 (A.2) 

We first consider the case when the reweighted estimator is computed at time = 1.t  In the estimator of 

the variance due to non-response given in (2.21), the vector 1
1̂  simplifies as  

               
 

   

11
01

11 0 0

01
1 0 1 0

1
1 1 1 1 1

1 0

ˆ = , , .
ˆ ˆ

ii
C

ii

C

yy

i s si s s

i iCi s s i s s
p k p k


   

   




 
 


 





 (A.3) 

After some algebra, the variance estimator in (2.21) may be rewritten as  

           
   

 

1

1 0

1 0 1 0

2
10

1nr 1
1 1 2 11

=1

ˆ1ˆ ˆ = .
ˆ

j

c
j

c c

y
C

j s sc i
i

c i s s i jj s sc

p y
V Y k

kp




 

   


 

 
 


  

 (A.4) 
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We now consider the case when the reweighted estimator is computed at time = 2.t  We focus on the 

simpler case when the same system of RHGs is kept over time. In the estimator of the variance due to non-

response given in (2.22), the vectors 1
2̂  and 2

2̂  simplify as  

 
 

   

22
01

22 1 1

01
2 1 2 1

1
2 1 1 1 1

1 0

ˆ = , , ,
ˆ ˆ

ii
C

ii

C

yy

i s si s s

i iCi s s i s s
p k p k


   

   




 
 


 





 (A.5) 

              
 

     

22
01

22 1 1

01
2 1 2 1

2
2 1 2 2 1 2 2

1 1 0 0

ˆ = , , .
ˆ ˆ ˆ ˆ

ii
C

ii

C

yy

i s si s s

i iC Ci s s i s s
p p k p p k


   

   




 
 


 





 (A.6) 

After some algebra, the variance estimator in (2.22) may be rewritten as  

          

 
   

 

 

2

2 1

2 1 2 1

2

2 1

2 1 2 1

2
10

2nr 1
2 2 2 1 1

=1

2
0

22 2
1 2 2

=1

ˆ1ˆ ˆ =
ˆ ˆ

ˆ1 .
ˆ ˆ

j

c
j

c c

j

c
j

c c

y
C
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y
C
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c i
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 
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 
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  


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(A.7)

 

If we further assume that ik   is constant over times = 1, 2,  and may thus be rewritten as ,ik  the 

expression in (A.7) simplifies as  

                                      
   

 

2

2 1

2 1 2 1

2
1 20

2nr
2 2 21 2

=1

ˆ1ˆ ˆ = .
ˆ

j

c
j

c c

y
C

j s sc i
i

c i s s i jj s sc

p y
V Y k

kp






 


   


 

 
 


  

 (A.8) 

with 
21 2

=1
ˆ ˆ=c cp p 


   for  = 1, , 0 .c C  This simplification of the variance estimator can be extended 

to the reweighted estimator at time .t  Assuming that the RHGs are kept over time, and that =i ik k  for 

any = 1, , ,t   the variance estimator in (2.12) may be written as  

                                      
   

 
1

1 1

2
10

nr
21

=1

ˆ1ˆ ˆ =
ˆ

jt

c
jt t

c ct t t t

y
tC

j s sc it
t t it

c i s s i jj s sc

p y
V Y k

kp






 


 


   
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 
 


  

 (A.9) 

with 1

=1
ˆ ˆ=

tt
c cp p


   for  = 1, , 0 .c C  
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