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Linearization versus bootstrap for variance estimation of the 
change between Gini indexes 

Guillaume Chauvet and Camelia Goga1 

Abstract 

This paper investigates the linearization and bootstrap variance estimation for the Gini coefficient and the change 
between Gini indexes at two periods of time. For the one-sample case, we use the influence function linearization 
approach suggested by Deville (1999), the without-replacement bootstrap suggested by Gross (1980) for simple 
random sampling without replacement and the with-replacement of primary sampling units described in Rao and 
Wu (1988) for multistage sampling. To obtain a two-sample variance estimator, we use the linearization 
technique by means of partial influence functions (Goga, Deville and Ruiz-Gazen, 2009). We also develop an 
extension of the studied bootstrap procedures for two-dimensional sampling. The two approaches are compared 
on simulated data. 

 
Key Words: Composite estimator; Horvitz-Thompson estimator; Influence function; Intersection estimator; Replication 

weights; Two-sample survey; Two-dimensional sampling design; Union estimator; Variance estimation. 

 
 

1  Introduction 
 

The Gini coefficient (Gini, 1914) is one of the best known concentration measure often desired in 

economical studies. If 1  denotes a quantitative positive variable such as the income and  1F   denotes its 

distribution function defined on  , ,    the Gini coefficient is  

 
   

 
1

1
= ,

2

v u dF u dF v
G

udF u




  

provided   0.udF u   The Gini coefficient measures the dispersion of a quantitative positive variable 

within a population. Statistical institutes generally make use of the Gini coefficient to evaluate the income 

inequalities of a country at different periods of time, or of different countries at the same time. In the last 

decades, the Gini coefficient has also been considered in economic and sociodemographic fields (see for 

example Navarro, Muntaner, Borrell, Benach, Quiroga, Rodriguez-Sanz, Vergès and Pasarin, 2006; 

Bhattacharya, 2007; Lai, Huang, Risser and Kapadia, 2008; Barrett and Donald, 2009), biology (Graczyk, 

2007), environment (Druckman and Jackson, 2008; Groves-Kirkby, Denman and Phillips, 2009) or 

astrophysics (Lisker, 2008).  

There is an extensive literature on variance estimation for the Gini coefficient with observations obtained 

from survey data, see Langel and Tillé (2013) for a review. Glasser (1962) and Sandström, Wretman and 

Waldèn (1985) considered the case of simple random sampling. Sandström, Wretman and Waldèn (1988) 

listed possible variance estimators for a general sampling design, including a jackknife variance estimator. 

This latter approach was further investigated by Yitzhaki (1991), Karagiannis and Kovačević (2000) and 



18 Chauvet and Goga: Linearization versus bootstrap for variance estimation of the change between Gini indexes 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Berger (2008). Linearization variance estimation was studied by Kovačević and Binder (1997), and Berger 

(2008) demonstrated the equivalence between linearization and a generalized jackknife technique first 

suggested by Campbell (1980). Qin, Rao and Wu (2010) proposed bootstrap and empirical likelihood based 

confidence intervals for the Gini coefficient. They studied these methods both theoretically and empirically 

in the particular case of stratified with replacement simple random sampling. However, bootstrap variance 

estimation has not been compared with alternative methods for the change between Gini indexes.  

In this article, we consider linearization versus bootstrap to estimate the change between Gini indexes. 

The paper is structured as follows. In Section 2, we first consider the estimation of the Gini coefficient in 

the one-sample case. The notation is defined in Section 2.1, and the substitution estimator of the Gini 

coefficient is presented in Section 2.2. The linearization variance estimator is given in Section 2.3, with 

application to the simple random sampling (SI) design and to a multistage sampling design. The main 

principles of the weighted bootstrap are briefly reviewed at the beginning of Section 2.4, and the without-

replacement bootstrap (BWO) suitable for SI sampling is introduced in Section 2.4.1, while the bootstrap 

of primary sampling units (BWR) suitable for multistage sampling is introduced in Section 2.4.2. In 

Section 3, we consider the estimation of the change between Gini indexes in the two-sample case. The 

notation is defined in Section 3.1, and we briefly review the principles of composite estimation which is 

applied in Section 3.1.1 for the two-dimensional SI design (SI2) and in Section 3.1.2 for a two-dimensional 

two-stage sampling design (MULT2). The composite estimator of the change between Gini indexes is 

presented in Section 3.2. The linearization variance estimator by means of the partial influence functions is 

given in Section 3.3, with application to the SI2 design and to the MULT2 design. An extension of the BWO 

for the SI2 design and of the BWR for the MULT2 design are then presented in Section 3.4. Linearization 

and the proposed bootstrap methods are compared in Section 4 through a simulation study. Section 5 

concludes. 

 
2  One sample case 
 

2.1  Notation 
 

Let U  denote some finite population of size N  whose units may be identified by the labels = 1, , .k N  

Suppose that the variable 1  is measured on the population ,U  and let 11 1, , Ny y  denote the values taken 

by 1  on the units in the population. Let 11 = ky
k U

M 
  denote the discrete measure taking unit mass on 

any point 1ky  in the population and 0 elsewhere, with 1ky  the Dirac mass at 1 .ky  Most of the parameters 

of interest 1  studied in surveys can be written as a functional T  of 1 ,M  namely  1 1= .T M  For 

instance, the total 1 1=y k
k U

t y
  equals 1 1.dM  In practice, a sample s  (with or without repetitions) is 

selected by means of a sampling design   ,p   and we observe the values 1ky  for k s  only. A substitution 

principle is used for estimation (see Deville, 1999, and Goga, Deville and Ruiz-Gazen, 2009). Let k  denote 

the expected number of draws for unit k  in the sample; in case of without-replacement sampling, this is the 

probability that unit k  is selected in the sample. Let 11
ˆ = kk y

k s
M w 

  denote the discrete measure taking 
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mass kw  on any point in the sample and 0 elsewhere, where 1=k kw    is the sampling weight. Substituting 

1M̂  into 1  yields the estimator  1 1
ˆ ˆ= .T M  

For a without-replacement sampling design, the substitution estimator for a total is the so-called Horvitz-

Thompson (HT) estimator HT
11

ˆ = .k ky k s
t w y

  The HT variance estimator is  

   1 1
HTHT
1

ˆ = ,
kl k l

y
k s l s kl k l

y y
v t

   


  (2.1) 

where  = Pr ,kl k l s   denotes the probability that units k  and l  are selected jointly in the sample, and 

= .kl kl k l     In the particular case of simple random sampling without replacement (SI) of size ,n  

we have HT
1,1

ˆ = syt N y  with 1
1, 1= ,s k

k s
y n y

  and formula (2.1) yields  

    
1 1

2HT 2 2HT 2
1 1,1 , ,

1 1 1
ˆ = where = .

1
k sy y s y s

k s

v t N S S y y
n N n 

     
  (2.2) 

For a with-replacement sampling design, the substitution estimator for a total is the so-called Hansen-

Hurwitz (HH) estimator HH
11

ˆ = .k ky k s
t w y

  We consider the important case of multistage sampling, where 

the N  units are grouped inside IN  non-overlapping Primary Sampling Units (PSU) 1 , , ,INU U  and 

where a with-replacement first-stage sample Is  of size m  is selected. Let Ii  denote the expected number 

of draws for the PSU iU  in .Is  A second-stage sample is  is then selected inside any Ii s  by means of 

some sampling design   .ip   Let k i  denote the expected number of draws for unit k  in .is  The estimated 

measure is then 1
1 1

1
ˆ = .k

I i
yIi k ii s k s

M    
    We have HH 1

1
ˆˆ =

I
iIiy i s

t Y 
  where 1

1
ˆ = ,

i
i kk ik s

Y y 
  and 

an unbiased variance estimator for HH
1

ˆ
yt  is  

  
2

HH
1HHHH

1

ˆ ˆ
ˆ = .

1 I

i y
y

i s Ii

m Y t
v t

m m


   

   (2.3) 

 
2.2  Estimating the Gini coefficient 
 

If the variable 1  is measured on the population ,U  the Gini coefficient is  

 
1 1

1
1

1
= ,

2

k l
k U l U

k
k U

y y
G

N y
 



 


  

see for example Nygård and Sandström (1985). It follows that 1G  is zero if 1  is constant on the population, 

which occurs when the total of 1  is equally distributed among all the population individuals. In the 

opposite case, when only one individual owns the whole amount of 1 , 1G  is maximized and equal to 

1 1 :N  the total of 1  is then concentrated in one point only, which means maximum inequality among 

members of the population. 

If all individuals k l  have different values for the variable 1 ,  the Gini coefficient 1G  is  
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      1 1 11

=1
1

1 1

2 1 2 11 1
= =

N
k N kk

k k U

y y

y k N y F y
G

t N t N


 
  

 (2.4) 

with    1 1 1 Ny y   the ordered values and    1
1

1 = 1 kN yk U
F N 

 
   the finite population distribution 

function; see Sandström, Wretman and Waldèn (1988) and Deville (1997) for further details on the 

derivation of (2.4). Nygård and Sandström (1985) called the term 1 N  the Gini finite population 

correction and gave several reasons to make this correction, such as the non-negativity of the lower bound 

of 1.G  As is frequently done in the literature (see for example Glasser, 1962), this correction is ignored in 

the sequel. We redefine the Gini coefficient as  

                                         
       

 

1 11 1 1

1
1 1

2 12 1
= =

Nk N kk U

y

F y ydM yy F y
G

t ydM y


 


 (2.5) 

where the finite population distribution function  1NF   is a functional family  

                                   
 

   1 1

1

1
= 1N yF y dM

dM y
 

 (2.6) 

indexed by .y  Substituting 1M̂  into (2.5) and (2.6) yields the estimator  

                                        
    

 

  1 1 1 1 1

1
11

ˆ ˆ ˆ2 1 2 1
ˆ = = ,

ˆ

N k N k kk s

k kk s

F y ydM y w F y y
G

w yydM y




 


 (2.7) 

where  

                                  
 

     11 1

1

1 1ˆ ˆ= 1 = 1
ˆ kN ky y y

k k s
k s

F y dM w
wdM y

  


 
 (2.8) 

is the substitution estimator of the distribution function 1 .NF  
 

2.3  Linearization variance estimation 
 

We give below some brief details about the influence function linearization (IFL) (Deville, 1999), which 

consists in giving a first-order expansion of the substitution estimator  1 1
ˆ ˆ= T M  around the true value 

 1 1= ,T M  to approximate the error by a linear estimator of some artificial linearized variable. More 

precisely, the first derivatives of T  with respect to 1M  are the influence functions  

  
   1 1

1
0

IT ; = ,lim
y

h

T M h T M
M y

h




 
  

and  1 1 1= IT ;k ku M y  is the linearized variable for all .k U  Suppose that  T   is homogeneous, namely 

there exists some positive number   dependent on T  such that    1 1=T rM r T M  for any real > 0.r  
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Assume also that  1lim < .N N T M   Under some additional regularity assumptions upon  T   and 

the sampling design (e.g., Goga and Ruiz-Gazen, 2014), Deville (1999) establishes that  

  1 2
1 1 1 1

ˆ = ,k k k p
k s k U

w u u o N n  

 

   
     

so that the error 1 1̂   can be approximated by the error of the HT estimator for the total of the linearized 

variable 1 .ku  For a without-replacement sampling design, using a sample-based estimator 1ˆ ku  of the 

linearized variable 1ku  in the HT variance estimator yields the variance estimator  

   1 1
HT

1LIN

ˆ ˆˆ = ,
kl k l

k s l s kl k l

u u
v 

   


  (2.9) 

where  = Pr ,kl k l s   denotes the probability that units k  and l  are selected jointly in the sample, and 

= .kl kl k l     Several results of asymptotic normality have been proved for specific sampling designs, 

see Hájek (1960, 1961, 1964), Rosén (1972), Sen (1980), Krewski and Rao (1981), Gordon (1983), Ohlsson 

(1986, 1989), Chen and Rao (2007), Brändén and Jonasson (2012), Saegusa and Wellner (2013) and 

Chauvet (2015), among others. If the sampling design is such that the substitution estimator 1̂  satisfies a 

central-limit theorem, an approximately  1 2 %  confidence interval is  1 lin 1
ˆ ˆ ,z v    

 1 lin 1
ˆ ˆz v     where z  is the upper %  cutoff for the standard normal distribution.  

In case of the Gini coefficient, we have = 0  and the linearized variable is  

   1 1 , < 1 1
1 1 1 1

1 1

1 1
= 2 ,

k k U
k N k k

y y

y y G G
u F y y

t t N

  
   (2.10) 

where    1 1 1 1

1
1 , < { < } 1 <= 1 1l k j kk U y y j y yl U j U

y y


    denotes the mean of the 1 jy  lower than 1 ,ky  see 

Deville (1999). Kovačević and Binder (1997) derived the same expression by means of the estimating 

equations linearization method; using the Demnati and Rao (2004) linearization approach also leads to the 

same result. The estimated linearized variable is  

   1 1 , < 1 1
1 1 1 1

1 1

ˆ ˆ1 1ˆˆ = 2
ˆˆ ˆ

k k s
k N k k

y y

y y G G
u F y y

t t N

  
   (2.11) 

where     1 1 1 1

1
1 , < 1< <= 1 1 .l k j kk s l j jy y y yl s j s

y w w y


    

In the particular SI case, the linearization variance estimator for the Gini coefficient is  

    1 1

2
HT 2 22

1 1 1,LIN ˆ ˆ, ,

1 1 1ˆ ˆ ˆ= where = ,
1

k su s u s
k s

v G N S S u u
n N n 

     
  (2.12) 

and where 1
1, 1ˆ ˆ= .s k

k s
u n u

  In the particular case of multistage sampling and with-replacement sampling 

of PSUs, the linearization variance estimator for the Gini coefficient is  
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   1

2
HH

1 ˆHH 1
1 1 1LIN

ˆ ˆ
ˆ ˆ ˆ= where = .

1 I i

i u
i kk i

i s Ii k s

m U t
v G U u

m m





 


   

   (2.13) 

 

2.4  Bootstrap variance estimation 
 

The use of bootstrap techniques in survey sampling has been extensively studied in the literature. The 

main bootstrap techniques may be thought as particular cases of the weighted bootstrap (Bertail and 

Combris, 1997; Antal and Tillé, 2011; Beaumont and Patak, 2012); see also Shao and Tu (1995, Chapter 6), 

Davison and Hinkley (1997, Section 3.7) and Davison and Sardy (2007) for detailed reviews. Under a 

weighted bootstrap procedure, the measure 1
ˆ = k yks

M w   is estimated, conditionally on the sample ,s  

by the bootstrap measure  

 *
1

ˆ = kk k y
k s

M w D 

  (2.14) 

where  = k k sD D   denotes a (random) vector of resampling weights. We note *E  and *V  for the 

expectation and variance with respect to the resampling scheme. In case of without-replacement sampling, 

the vector D  is generated in such a way that  

  HT HTHT
* *1 1

ˆ ˆandk k k k k ky y
s s

E w D y t V w D y v t  
   
      (2.15) 

so that the two first moments of the HT-estimator are approximately matched. In case of with-replacement 

sampling, the vector D  is generated in such a way that  

  HH HHHH
* *1 1

ˆ ˆandk k k k k ky y
s s

E w D y t V w D y v t  
   
      (2.16) 

so that the two first moments of the HH-estimator are approximately matched.  

Under any weighted bootstrap technique, the plug-in estimator of  1 1= T M  is  * *
1 1

ˆ ˆ= ,T M  and the 

variance of  1 1
ˆ ˆ= T M  is estimated by  

     2
* * *

* 1 * 1 * 1
ˆ ˆ ˆ= .V E E    (2.17) 

Since the variance estimator (2.17) may be difficult to compute exactly, a simulation-based variance 

estimator may be used instead. More precisely, C  independent realizations 1 , , CD D  of the vector D  are 

generated, and we denote  * *
1 1

ˆ ˆ=c cT M  with *
1

ˆ
cM  the Bootstrap measure associated to the vector .cD  

Then  1̂V   is estimated by  

  
2

* *
1 1 1

=1 =1

1 1ˆ ˆ ˆ=   .
1

C C

B c c
c c

v
C C

  




    
   (2.18) 

Two types of confidence intervals are usually computed. The percentile method makes use of the ordered 

bootstrap estimates  
*
1

ˆ , = 1, ,c c C   to form a  1 2 %  confidence interval    
* *
1 1

ˆ ˆ[ , ]L U   with =L C  
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and  = 1 .U C  The bootstrap t  involves the estimation of the pivotal statistic =t  

1 1 BWO 1
ˆ ˆ( ) / ( )v    by its bootstrap counterpart * * * *

1 1 BWO 1
ˆ ˆ ˆ= ( ) / ( ) ,t v    where * *

BWO 1̂( )v   is 

obtained by applying the bootstrap procedure to the resample *.s  The bootstrap t  is computationally very 

intensive since a double bootstrap is required, and is thus less attractive for a data user. Therefore, we do 

not pursue this approach further and we focus on the percentile method.  

Linearization methods provide variance formulas applicable to general sampling designs, but involve 

possibly intricate computation of derivatives for complex parameters of interest such as the Gini coefficient. 

Unlike the linearization, the bootstrap avoids theoretical work by re-calculating the existing estimation 

system repeatedly. Replicate weights are supplied with the data set, and may be easily used to produce 

variance estimates for a wide range of statistics. However, a bootstrap technique is usually not suitable for 

general sampling designs. That is, a particular sampling design usually requires a tailor made resampling 

scheme. In this paper, we focus on two particular bootstrap techniques, which will be generalized in 

Section 3 to the two-sample context. 

 
2.4.1  Without-replacement bootstrap for SI sampling 
 

When the sample s  is selected by means of SI, we consider the without replacement bootstrap (BWO) 

introduced by Gross (1980). The approach is readily extended to stratified simple random sampling (STSI) 

with a finite number of strata. Suppose that N n  is an integer. Then the vector D  is obtained by, first 

creating a pseudo-population *U  of size N  by duplicating N n  times each unit k  in the original sample 

,s  and then by selecting a SI resample *s  of size n  in *.U  

The bootstrap measure is given by (2.14), where the resampling weight kD  is the number of times unit 

k s  is selected in *.s  The building of *U  may be avoided by noting that under the BWO procedure, the 

vector D  follows a multivariate hypergeometric distribution. Therefore, the resampling weights may be 

directly generated. It can be shown that the BWO procedure leads to  

  
1

HT HTHT
* *1 1

1

1
ˆ ˆ= and = ,

1
k k k k k ky y

s s

n
E w D y t V w D y v t

N





  
         (2.19) 

where  HTHT
1

ˆ
yv t  is given in (2.2), so that equation (2.15) is approximately matched for a large sample size.  

Several solutions have been proposed to handle the case when N n  is not an integer, see Chao and Lo 

(1985), Bickel and Freedman (1984), Sitter (1992b), Booth, Butler and Hall (1994), Presnell and Booth 

(1994), among others. The generalization of BWO variance estimation for unequal probability sampling 

designs is considered in Särndal, Swensson and Wretman (1992) and Chauvet (2007).  

 
2.4.2  With-replacement bootstrap for multistage sampling 
 

When the sample s  is selected by means of multistage sampling and with-replacement unequal 

probability sampling of PSUs, we consider the bootstrap of PSUs (BWR) introduced by Rao and Wu (1988). 
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A with-replacement resample *
Is  of size 1m   is selected by means of simple random sampling with 

replacement (SIR) in the original first-stage sample .Is  The bootstrap measure is  

 1

*

1 1*
1

ˆ = = ,
1

k k

iI

y k k yIi k i
k s k si s

m
M w D

m
    

     (2.20) 

where the resampling weight kD  equals   11m m   multiplied by the number of times the PSU containing 

k  is selected in * .Is  

The resampling size 1m   is used to reproduce the usual unbiased variance estimator in the linear case 

(see Rao and Wu, 1988). It can be shown that the BWR procedure leads to  

  HH HHHH
* *1 1

ˆ ˆ= and = ,k k k k k ky y
s s

E w D y t V w D y v t  
   
     (2.21) 

where  HHHH
1

ˆ
yv t  is given in (2.3), so that equation (2.16) is exactly matched. The BWR procedure is 

particulary simple, since involving a resampling for the first-stage of sampling only, the sub-samples of 

Secondary sampling Units (SSUs) being left unchanged inside the resampled PSUs. 

 
3  Two-sample case 
 

3.1  Notation and composite estimation 
 

Suppose now that two variables 1  and 2  are measured on the population ,U  and let 1 , ,d dNy y  

denote the values taken by , = 1, 2,d d  on the units in the population. The variables 1  and 2  may 

typically refer to some characteristic of interest collected at two different times 1  and 2 .  We consider the 

estimation of parameters   that can be written as a functional  1 2= , ,T M M  where 

 = .dkd yk U
M 

  For instance, the linear case 2 1= y yt t t   corresponds to the difference between the 

totals 2 2=y k
k U

t y
  and 1 1= .y k

k U
t y

  

Let 1s  and 2s  be two samples of sizes 1n  and 2 ,n  respectively, selected from the same population U  

according to some two-dimensional sampling design  ,p    (see Goga, 2003). The variable 1  is measured 

on 1,s  while the variable 2  is measured on 2 .s  Plugging sample-based estimators ˆ
dM  in   yields the 

substitution estimator   1 2
ˆ ˆ= , .T M M  Unlike the one-sample case, several estimators ˆ

dM  are possible. 

In what follows, we focus on the general class of composite estimators introduced by Goga, Deville and 

Ruiz-Gazen (2009). We note 1 1 2= \ ,s s s 3 1 2=s s s  and 2 2 1= \ .s s s  For  1 , 3, 2 ,     we note 

, k   the expected number of draws for unit k  in s  and , ,
ˆ = ,dkd k y

k s
M w 


   where 1

, ,= .k kw  
   The 

composite estimators of 1M  and 2M  are  

        co co
1,1 1,3 2,2 2,31 2

ˆ ˆ ˆ ˆ ˆ ˆ=  1  and =  1  ,M a a M a M M b b M b M      (3.1) 

where a  and b  are some known constants. The choice = = 0a b  leads to the intersection estimator with 
int

1,31
ˆ ˆ=M M  and int

2,32
ˆ ˆ= ,M M  where the overlapping sample 3s  only is used.  



Survey Methodology, June 2018 25 
 

 
Statistics Canada, Catalogue No. 12-001-X 

When estimating the parameter 2 1= ,y yt t t   the composite estimator is  

   
2 1

co
co coˆ ˆ, = ,y yt a b t t   (3.2) 

where  
1

co co
1

ˆˆ =yt ydM y  and  
2

co co
2

ˆˆ = .yt ydM y  It may be rewritten as  

         2 2 2 3 1 1 1 3 2 3 1 3

co

, , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ, = ,y s y s y s y s y s y st a b b t t a t t t t        (3.3) 

where , ,ˆ = .dy s k dkk s
t w y


  The variance of the composite estimator is  

          2 2 2 3 1 1 1 3 2 3 1 3

co

, , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ, = , ,1 , , , ,1 .y s y s y s y s y s y sV t a b b a V t t t t t t b a         (3.4) 

Finding the vector  opt opt,a b   which minimizes the variance in (3.4) leads to the optimal composite 

estimator (Goga, Deville and Ruiz-Gazen, 2009, Section 3.6). Note that this is not an estimator per se, since 

it depends on unknown quantities which need to be estimated in practice. However, this is a useful 

benchmark which we will use for the appraisal of simpler composite estimators.  

A variance estimator is obtained by substituting in (3.4) an estimator of the variance-covariance matrix. 

The derivation of variance estimators is detailed in Sections 3.1.1 and 3.1.2 for two examples of two-

dimensional sampling designs. 
 

3.1.1  Two-dimensional SI design 
 

The two-dimensional SI design (SI2) of fixed size  1 3 2, ,n n n   assigns equal probabilities to all 

 1 2= ,s s s  for which the associated subsamples 1 ,s  3s  and 2s   have the required sizes 1 ,n  3n  and 2 ,n   

see Goga (2003) and Qualité and Tillé (2008). The SI2 design has the attractive property that the marginal 

samples 1 ,s  3s  and 2s   are SI samples from the population .U  Similarly, 1s  is a SI sample of size 

1 1 3= ,n n n   and 2s  is a SI sample of size 2 2 3= .n n n   For the SI2 sampling design, the composite 

estimator in (3.3) yields  

                                              2 3 1 3 3 3

co

2, 2, 1, 1, 2, 1,, = ,s s s s s st a b Nb y y Na y y N y y        (3.5) 

and the variance of the composite estimator is  

                                          1 21 2

co
2 22

1 12 , 2, ,, = 2 , ,y y Uy U y UV t a b N c a S c a b S c b S    (3.6) 

with  

                                       

 
 

 
 

 
   

2 2

1
3 1 3

2 2

2
3 2 3

12
3

1 1
= ,

1 1
= ,

1 1 1
, = ,

a a
c a

n n n N

b b
c b

n n n N

a b
c a b

n N


 




 



 


  

see Appendix for a proof.  
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We consider two examples. The choice = = 0a b  leads to the intersection estimator  

      
3

int co

2 1
3

= 0, 0 = ,k k
k s

N
t t y y

n 
    (3.7) 

and the variance simplifies as  

   2 1

int
22

,
3

1 1
= .y y UV t N S

n N 
  

 
 (3.8) 

The choice 1
11=a n n
  and 1

22=b n n
  leads to the union estimator  

    
2 1

uni co
1 1

1 2 2 11 2
2 1

= , = k k
k s k s

N N
t t n n n n y y

n n
 

 
 

     (3.9) 

where the complete samples are used, and the variance may be written as  

   1 21 2

uni 3
2 22

,, ,
1 1 2 2

1 1 1 1 1
= 2 .

 
y y Uy U y U

n
V t N S S S

n N n n N n N
                

     
 (3.10) 

The variances of the union estimator and of the intersection estimator were derived by Qualité and Tillé 

(2008), see also Tam (1984).  

The choice of a  and b  is of practical importance to obtain an efficient composite estimator. After some 

algebra, the vector  opt opt,a b   which minimizes the variance of   
co

,t a b  is given by  

   1
opt opt, =a b A X  (3.11) 

with  

 

1 2

1 1 2 1 2

1 2 1 2

2

1 ,

2
1 3 , , ,

2 2
, 2 , ,

2
2 3,

= and = 1 ,1 .

y y U

y U y y U y y U

y y U y U y U

y U

n S

n n S S S
A X

S SS n

S n n

       
   



 (3.12) 

For two variables 1  and 2  related to a same characteristic collected at two different times, 1 2,y y US  is 

expected to be close to 
1

2
,y US  and 

2

2
, .y US  The vector X  in (3.12) is in turn close to the null vector, and if the 

size of the overlapping sample 3s  is comparable to that of 1s   and 2s   we obtain opt 0a   and opt 0.b   

Therefore, using the intersection estimator where = = 0a b  seems reasonable in practice. On the contrary, 

the union estimator can be very inefficient; see Section 4.2 for an illustration. These conclusions are 

consistent with that of Qualité and Tillé (2008), Section 2.2.2.  

Several variance estimators may be used for the composite estimator. Estimating the dispersions on the 

overlapping sample only yields the unbiased variance estimator  

           1 2 31 3 2 3

co
HT 2 22

1 12 , 2int , ,, = 2 , ,y y sy s y sv t a b N c a S c a b S c b S    (3.13) 
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while an estimation on the whole samples yields  

           1 2 31 1 2 2

co
HT 2 22

1 12 , 2uni , ,, = 2 , .y y sy s y sv t a b N c a S c a b S c b S    (3.14) 

Berger (2004) considered variance estimation for the union estimator under a maximum entropy rotating 

sampling scheme, by estimating separately the three components in (3.6). 

 
3.1.2  Two-dimensional multistage design 
 

We now consider a two-dimensional two-stage sampling design (MULT2). We assume that a with-

replacement first-stage sample Is  of size m  is first selected among the PSUs 1, , .INU U  Inside each PSU 

,Ii s  a SI2 sample of size  1 3 2, ,i i in n n   is then selected. This type of sampling design emerges in particular 

in case of a self-weighted two-stage design in two waves, with a partial replacement at the second wave of 

the SSUs selected at the first wave. The composite estimator in (3.3) yields  

                                             
co , co

1, = ,
I

i

Ii
i s

t a b t a b 


   (3.15) 

where  

                                               
2 3 1 3 3 3

, co

2, 2, 1, 1, 2, 1,, = ,i i i i i i

i

i i is s s s s st a b N b y y N a y y N y y
 

       (3.16) 

where   1
, = ,i

i
i

kd s k s
y n y





   where = ,i

is s U   and where iN  denotes the number of SSUs inside 

the PSU .iu  

For example, using the overlapping samples only inside the PSUs yields the intersection estimator  

                                          
3 3

int , int , int
1

2, 1,= with = .i i

I

i i

i s sIi
i s

t t t N y y 


     (3.17) 

Using the complete samples inside the PSUs yields the union estimator  

                                         
2 1

uni , uni , uni
1

2, 1,= with = .i i

I

i i

i s sIi
i s

t t t N y y 


     (3.18) 

We note that for any vector of values  , ,a b   the variance due to the first-stage of sampling for   
co

,t a b  

is the same. The possible composite estimators thus differ with respect to the second-stage variance only. 

In view of the discussion in Section 3.1.1, we therefore expect the intersection estimator to be close to the 

optimal composite estimator; see Section 4.2 for an illustration. An unbiased variance estimator for 
  

co
,t a b  is given by  

    
     

2, co co
co

HH
, ,

, = .
1 I

i

i s Ii

m t a b t a b
v t a b

m m

    
   

  (3.19) 

 
3.2  Estimation of the change between Gini indexes 
 

The change between Gini indexes 2 1=G G G   may be written as  
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    

 

    

 

2 2 1 1

2 1

2 1 2 1
=

N NF y ydM y F y ydM y
G

ydM y ydM y

 
  

 
 (3.20) 

where    1= 1 , = 1, 2.dkdN y yk U
F y N d

  Using composite estimation leads to  

                             
    

 

    

 

co co co co
co 2 2 1 1

co co
2 1

ˆ ˆ ˆ ˆ2 1 2 1
, =

ˆ ˆ

N NF y ydM y F y ydM y
G a b

ydM y ydM y

 
  

 
 (3.21) 

where         
1

co co coˆ ˆ ˆ= 1 .ydN d dF y dM y dM 


   

Usually, in a temporal sampling framework, the samples 1s  and 2s  are not independent. Consequently, 

our set-up differs from the usual estimation of functionals depending on distribution functions estimated 

with independent samples; see for example Pires and Branco (2002) and Reid (1981), who give the first-

order expansion of a two-sample functional using the partial influence functions. Davison and Hinkley 

(1997, page 71) give bootstrap methods under a similar framework. Using a general two-dimensional 

sampling design  , ,p    Goga, Deville and Ruiz-Gazen (2009) give a two-sample linearization technique 

of bivariate functionals that will be used in what follows. 

 
3.3  Linearization variance estimation 
 

To obtain the asymptotic variance of   
co

, ,a b  we adopt the asymptotic framework introduced by 

Goga, Deville and Ruiz-Gazen (2009), which is an extension to the two-sample case of the asymptotic 

framework of Isaki and Fuller (1982). Define, when they exist, the partial influence functions of a functional 

 1 2,T M M  at point y  as  

 

 
   

 
   

1 2 1 2
1 1 2

0

1 2 1 2
2 1 2

0

, ,
, ; = ,lim

, ,
, ; = .lim

y

h

y

h

T M h M T M M
I T M M y

h

T M M h T M M
I T M M y

h









 

 
  

We define the linearized variables  1 2= , ;dk d dku I T M M y  for = 1, 2d  as the partial influence functions 

of T  at  1 2,M M  and = .dky y  For the change between Gini indexes ,G  the linearized variables dku  

may be computed using (2.10), namely  

   , < 1 1
= 2 ,

d d

dk dk U d d
dk dN dk dk

y y

y y G G
u F y y

t t N

  
   (3.22) 

where     
1

, < < <= 1 1 .dl dk dj dkdk U djy y y yl U j U
y y



    The estimated linearized variable is  

  
co co co

, <co
co co
1 1

ˆ ˆ1 1ˆˆ = 2 .
ˆˆ ˆ

dk dk s d d
dk dk dkdN

y y

y y G G
u F y y

t t N

  
   (3.23) 
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3.3.1  Two-dimensional SI design 
 

In case of the SI2 design presented in Section 3.1.1, plugging the variables dku  derived in (3.22) into the 

variance formula in (3.6) yields the variance approximation  

           1 21 2

co
2 22

1 12 , 2, ,, 2 , ,u u Uu U u UV G a b N c a S c a b S c b S     

see Theorem 1 in Goga, Deville and Ruiz-Gazen (2009). To obtain a variance estimator, the linearized 

variables may be estimated in several ways. If the overlapping sample 3s  only is used, the estimated 

linearized variables ˆ du  are obtained from (3.23) by taking co
1, 31

ˆ ˆ=M M  and co
2, 32

ˆ ˆ= .M M  A variance 

estimator is then obtained by plugging these linearized variables into (3.13). This leads to  

           1 2 31 3 2 3

co
HT 2 22

ˆ ˆ1 12 , 2int ˆ ˆ, ,, = 2 , .u u su s u sv G a b N c a S c a b S c b S    (3.24) 

If the whole samples 1s  and 2s  are used, the estimated linearized variable ˆ du  are obtained from (3.23) by 

taking co
1,11

ˆ ˆ=M M  and co
2,22

ˆ ˆ= .M M  A variance estimator is then obtained by plugging these linearized 

variables into (3.14). This leads to  

           1 2 31 1 2 2

co
HT 2 22

ˆ ˆ1 12 , 2uni ˆ ˆ, ,, = 2 , .u u su s u sv G a b N c a S c a b S c b S    (3.25) 

 
3.3.2  Two-dimensional multistage design 
 

In case of the MULT2 design presented in Section 3.1.2, the linearized variables may also be estimated 

in several ways. For the sake of simplicity, we consider using the overlapping sample 3s  only so that the 

estimated linearized variables ˆ du  are obtained from (3.23) by taking co
1,31

ˆ ˆ=M M  and co
2,32

ˆ ˆ= .M M  A 

variance estimator is then obtained by plugging these linearized variables into (3.19). This leads to  

    
     

2, co co
co

HH
, ,

, = ,
1 I

i

i s Ii

m u a b u a b
v G a b

m m

    
   

  (3.26) 

where   
co

,u a b  and   
, co

,
i

u a b  are obtained from (3.15) and (3.16), respectively, by replacing dky  

with ˆ .dku  

 
3.4  Bootstrap variance estimation 
 

Bootstrap methods have not yet been studied for the change between Gini indexes. The principles of the 

weighted bootstrap technique can be extended to the two-sample context, i.e. each measure ,
ˆ

dM   with 

= 1, 2d  and  1 , 3, 2     is estimated, conditionally on the samples originally selected, by some 

weighted bootstrap measure *
,

ˆ
dM   which enables to match, at least approximately, the two first moments of 

an unbiased estimator in the linear case. In Section 3.4.1, we consider a generalization of the BWO to the 

SI2 design. In Section 3.4.2, we propose a generalisation of the BWR to the MULT2 design. 
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3.4.1  A generalization of the BWO to the SI2 design 
 

We first consider the SI2 design. Building a pseudo-population *U  is more intricate in the two-sample 

case, since the variables of interest measured at waves 1  and 2  need to be available for each unit in *.U  

We therefore describe a bootstrap algorithm where the overlapping sample 3s  only is used to build the 

pseudo-population *,U  in the spirit of the intersection variance estimator in (3.24).  

Suppose that 3N n  is an integer. The vectors D  are obtained by, first creating a pseudo-population 
*U  of size N  by duplicating 3N n  times each unit k  in the original sample 3 .s  A SI2 resample 

 * * * *
1 3 2= , ,s s s s   of size  1 3 2, ,n n n   is then selected in *.U  The bootstrap measures are then  

 
3

*
, , ,

ˆ = ,d k k ydk
k s

M w D   

  (3.27) 

with , kD  the number of times that unit k  is selected in the resample *.s  In the linear case, the bootstrap 

estimator of the parameter t  is then  

         * * * * * *2 2 1 1 2 12 3 1 3 3 3

co*

, , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ, = ,y s y s y s y s y s y st a b b t t a t t t t
 

       (3.28) 

where *
3

, ,,ˆ = .d k k dky s k s
t w D y

    After some algebra, we obtain  

             1co* int co* co3 HT
* * int

1

1
, = and , = , ,

1

n
E t a b t V t a b v t a b

N






   


 (3.29) 

where 
int

t  is given in (3.7), and  HT HT
1int

ˆ
yv t  is given in (3.13). The proposed generalization of the BWO 

therefore enables to exactly match the intersection estimator of the first moment, and to approximately 

match the intersection estimator of the second moment for a large 3 .n  

The building of *U  may be avoided by noting that under the BWO procedure, each vector D  follows 

a multivariate hypergeometric distribution. Therefore, the resampling weights may be directly generated. 

The algorithm may be adapted to the general case when 3N n  is not an integer by means of any of the 

techniques mentioned in Section 2.4. 

 
3.4.2  A generalization of the BWR for the two-dimensional multistage design 
 

We now consider the two-dimensional two-stage sampling design with a common first-stage sample Is  

presented in Section 3.1.2. The proposed bootstrap procedure is similar to that described in Rao and Wu 

(1988). A with-replacement resample *
Is  of size 1m   is selected by means of simple random sampling 

with replacement (SIR) in the original first-stage sample .Is  The bootstrap measures are then  

                                                     
*

1 1*
,

ˆ = where = .
1 i

I

i

d y k iIi k i dk
ii s k s

m n
M

m N
   



 
 

    (3.30) 

It may be rewritten as  

                                                     *
, , ,

ˆ = ,d k k ydk
k s

M w D 


  

  (3.31) 
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with s  the union of the samples is  for ,Ii s  and where the resampling weight , kD  equals   11m m   

multiplied by the number of times the PSU containing k  is selected in *.Is  

In the linear case, the bootstrap estimator of the parameter t  is then  

                                                 
*

co* , co
1, = ,

1
I

i

Ii
i s

m
t a b t a b

m
 



 
   (3.32) 

where   
, co

,
i

t a b  is defined in (3.16). After some algebra, we obtain  

                                                   co* co co* co
HH

* *, = , and , = , ,E t a b t a b V t a b v t a b     (3.33) 

where   
co

,t a b  is given in (3.15), and    co
HH ,v t a b  is given in (3.19). The proposed generalization of 

the BWR therefore enables to exactly match the composite estimator of the first moment, and the associated 

estimator of the second moment.  

 
4  Simulation study 
 

In this section, five artificial populations are first generated as described in Section 4.1. In Section 4.2, 

the union estimator is compared with the intersection estimator in terms of asymptotic variance. A Monte 

Carlo experiment is then presented in Section 4.3, and the performances of the linearization and the 

bootstrap are compared in case of a SI2 sampling design. A similar comparison is made in Section 4.4, in 

case of the bi-dimensional two-stage sampling design. 

 
4.1  Simulation set-up 
 

We generated 5 finite populations of size =N  40,000, each containing two study variables 1y  and 2 .y  

The 1ky  values and the 2ky  values were generated according to the lognormal model  

  = exp  .dk d ky    (4.1) 

The ’sk  were generated according to a standard normal distribution. The values of the Gini coefficients 

for the five populations are presented in Table 4.1. 

 
Table 4.1 
Gini coefficients for 5 populations  
 

Population  Pop. 1  Pop. 2  Pop. 3  Pop. 4  Pop. 5  

1G   0.249 0.298  0.348 0.397 0.447 

2G   0.259 0.318  0.378 0.437 0.496 

G   0.010 0.020  0.030 0.040 0.049 
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In each of the 5 populations, the units were grouped into =M  500 clusters of equal size 0 =N  80. The 

clusters were built so that the intra-cluster correlation coefficient with respect to the variable 1y  was 

approximately equal to 0.20 in each population. 
 

4.2  Comparison of the union estimator and of the intersection estimator 
 

In this section, we compare the union estimator with the intersection estimator for the change between 

Gini indexes in terms of asymptotic variance. We consider two sampling designs: the SI2 design presented 

in Section 3.1.1 with 1 3 2( , , ) =n n n   (1,000; 1,000; 1,000), (1,000; 2,000; 1,000) or (1,000; 4,000; 1,000); 

the MULT2 design presented in Section 3.1.2 with =m  300 and 1 3 2( , , ) =i i in n n   (10; 10; 10), (10; 20; 10) 

or (10; 40; 10). 

For each population, we compute the asymptotic variance  uni

lin ( )V G  of the union estimator, and the 

asymptotic variance  int

lin ( )V G  of the intersection estimator. So as to compare them, we compute the 

relative efficiency defined as  

  
   
 

lin

opt

lin

RE = ,
V G

G
V G



 



 (4.2) 

with 
opt

G  the optimal estimator.  

The results are presented in Table 4.2. The union estimator is highly inefficient. Its asymptotic variance 

is 15 to 244 times higher than that of the intersection estimator for SI2, and 2 to 44 times higher than that 

of the intersection estimator for MULT2. The difference between both estimators tends to decrease when 

the sample size of the common sample increases and/or when G  increases. On the other hand, the 

intersection estimator is slightly less efficient than the optimal estimator for SI2, with RE ranging from 1.33 

to 2.46, and approximately as efficient as the optimal estimator for MULT2, with RE ranging from 1.02 to 

1.12. This supports the heuristic reasoning in Section 3.1.1. In view of the poor performance of the union 

estimator, and of the good performance of the intersection estimator, we confine our attention to the latter 

in the remainder of the simulation study. 

 
Table 4.2 
Relative efficiency of the union estimator and of the intersection variance estimator for 5 populations  
 
Design   Sample size Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 

 
uni

G  
int

G  
uni

G  
int

G  
uni

G  
int

G  
uni

G  
int

G  
uni

G  
int

G

SI2   3 =n 1,000   600.22 2.46  200.23  2.27  96.72  2.10  58.73  1.96   39.35  1.85 

  3 =n 2,000   410.23 1.84  141.71  1.76  70.71  1.68  44.18  1.61   30.33  1.54 

  3 =n 4,000   250.02 1.47  88.40  1.43  45.17  1.40  28.86  1.36   20.23  1.33 

MULT2   3 =in 10   49.10 1.12  19.89  1.13  11.83  1.14  8.84  1.15   7.28  1.16 

  3 =in 20   23.08 1.05  9.75  1.05  6.08  1.05  4.73  1.06   4.04  1.07 

  3 =in 40   9.15 1.02  4.25  1.02  2.90  1.02  2.41  1.02   2.16  1.02 
 



Survey Methodology, June 2018 33 
 

 
Statistics Canada, Catalogue No. 12-001-X 

4.3  Comparison of linearization and bootstrap for the SI2 design 
 

In this section, we compare the linearization and bootstrap for variance estimation and for producing 

confidence intervals, in case of the intersection estimator for the change between Gini indexes under the SI2 

sampling design. From each population, we selected =B  10,000 two-dimensional samples by means of the 

SI2 design indexed by 1 3 2( , , ) =n n n   (1,000; 1,000; 1,000), 1 3 2( , , ) =n n n   (1,000; 2,000; 1,000) or 

1 3 2( , , ) =n n n   (1,000; 4,000; 1,000). In each sample, we computed the intersection estimator 
int

G  of the 

change between Gini indexes. For this estimator, we computed (i) the linearization variance estimator 
 int

int ( )v G  given in (3.24), and (ii) the Bootstrap variance estimator 
BWO ( ),v G  following the Bootstrap 

procedure described in Section 3.4.1.  

To measure the bias of a variance estimator ( ),v G  we used the Monte Carlo Percent Relative Bias  

   
   

 
1

=1
MSE

RB = 100 ,
MSE

B
b

b
B v G G

v G
G

   
 




 (4.3) 

where ( )bv G  denotes the estimator ( )v G  in the thb  sample, and MSE( )G  is a simulation-based 

approximation of the true mean square error of  ,G  obtained from an independent run of 100,000 

simulations. As a measure of stability of ( ),v G  we used the Relative Stability  

   
    

 

1 22
1

=1
MSE

RS = .
MSE

B

b
B v G G

v G
G

     



 (4.4) 

Finally, we compared the coverage rates of (i) the normality-based confidence interval with use of the 

linearization variance estimator and (ii) the confidence interval associated to the percentile Bootstrap. The 

bootstrap variance estimators and the bootstrap confidence intervals are based on =C  1,000 bootstrap 

replications. Error rates of the confidence intervals (with nominal one-tailed error rate of 2.5% in each tail) 

are compared. The comparison with nominal error rate of 5% gave no qualitative difference and is thus 

omitted.  

The results are presented in Table 4.3. Both variance estimators are negatively biased. This bias is 

moderate (less than 5% ) in most cases, except for the smaller sample size =n  1,000, and for the population 

5U  with the highest value of .G  The bootstrap variance estimator is systematically slightly more biased 

than the linearization variance estimator, but the difference decreases as the sample size increases. For both 

variance estimators, the instability increases with .G  The Bootstrap variance estimator is slightly more 

stable for the smaller sample size =n  1,000, but the situation is reversed when the sample size increases. 

Turning to the coverage of the confidence intervals, both methods lead to under-coverage which is consistent 

with the negative bias of both variance estimators. The normality-based confidence intervals show a slightly 

better coverage than the bootstrap percentile confidence intervals. For both confidence intervals, the under-

coverage is more acute when G  increases, and reduces when the sample size increases. 
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Table 4.3 
Relative Bias, Relative Stability and Nominal One-Tailed Error Rates for linearization and Bootstrap variance 
estimation of the intersection estimator of the change between Gini indexes for 5 populations and with the SI2 
sampling design  
 

Pop.  Linearization   Bootstrap 
RB RS L U L+U   RB RS L U L+U 

 Sample size  1 3 2, , =n n n   (1,000; 1,000; 1,000) 

Pop. 1  -1.41 24.6 1.8 4.5 6.3  -1.83 24.6 1.8 4.9 6.7 
Pop. 2  -1.98 32.4 1.6 5.2 6.8  -2.64 32.1 1.7 5.9 7.6 
Pop. 3  -2.80 41.9 1.3 6.3 7.7  -3.83 40.9 1.3 7.0 8.3 
Pop. 4  -4.00 52.5 1.0 7.7 8.7  -5.57 50.6 1.1 8.2 9.3 
Pop. 5  -5.80 64.0 1.0 9.2 10.1  -8.11 60.6 0.8 9.9 10.7 
 Sample size  1 3 2, , =n n n   (1,000; 2,000; 1,000) 

Pop. 1  -1.38 17.3 1.6 3.7 5.3  -1.67 17.8 1.8 4.1 5.9 
Pop. 2  -1.64 23.0 1.4 4.3 5.8  -2.05 23.2 1.4 4.7 6.1 
Pop. 3  -1.99 30.1 1.2 5.0 6.2  -2.58 30.0 1.1 5.3 6.4 
Pop. 4  -2.50 38.4 1.0 6.0 6.9  -3.38 37.9 1.0 6.3 7.3 
Pop. 5  -3.30 47.9 0.7 7.2 7.9  -4.62 46.7 0.7 7.5 8.2 
 Sample size  1 3 2, , =n n n   (1,000; 4,000; 1,000) 

Pop. 1  -0.60 11.9 2.0 3.4 5.3  -0.68 12.8 2.1 3.4 5.5 
Pop. 2  -0.67 15.9 1.8 3.7 5.6  -0.80 16.5 2.0 3.9 5.9 
Pop. 3  -0.83 20.8 1.8 4.4 6.2  -1.03 21.3 1.9 4.4 6.3 
Pop. 4  -1.13 26.7 1.5 5.0 6.6  -1.46 26.9 1.6 5.0 6.6 
Pop. 5  -1.64 33.4 1.4 5.8 7.1  -2.18 33.5 1.4 5.8 7.1 

 
4.4  Comparison of linearization and bootstrap for the MULT2 design 
 

In this section, we compare the linearization and bootstrap for variance estimation and for producing 

confidence intervals, in case of the intersection estimator for the change between Gini indexes under the 

MULT2 sampling design presented in Section 3.1.2. From each population, we selected =B  10,000 two-

dimensional two-stage samples by means of the MULT2 design indexed by =m  300 and 

1 3 2( , , ) =i i in n n   (10; 10; 10), (10; 20; 10) or (10; 40; 10). In each sample, we computed the intersection 

estimator 
int

G  of the change between Gini indexes. For this estimator, we computed (i) the linearization 

variance estimator  co
HH { ( , )}v G a b  given in (3.26), and (ii) the Bootstrap variance estimator  int

BWR ( ),v G  

following the Bootstrap procedure described in Section 3.4.2.  

To measure the bias of a variance estimator ( ),v G  we used the Monte Carlo Percent Relative Bias 

defined in equation (4.3), and the Relative Stability defined in equation (4.4). The true mean square error of 
G  was obtained from an independent run of 100,000 simulations. Also, we compared the coverage rates 

of (i) the normality-based confidence interval with use of the linearization variance estimator and (ii) the 

confidence interval associated to the percentile Bootstrap. The bootstrap variance estimators and the 

bootstrap confidence intervals are based on =C  1,000 bootstrap replications. Error rates of the confidence 

intervals (with nominal one-tailed error rate of 2.5% in each tail) are compared. The comparison with 

nominal error rate of 5% gave no qualitative difference and is thus omitted.  

The results are presented in Table 4.4. Both variance estimators are approximately unbiased for small 

values of ,G  but show a moderate negative bias which increases with .G  The bootstrap variance 

estimator is more biased than the linearization variance estimator. For both variance estimators, the 
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instability increases with .G  The Bootstrap variance estimator is slightly more stable than the linearization 

variance estimator. Both methods lead to an under-coverage which is consistent with the negative bias of 

both variance estimators. The normality-based confidence intervals perform slightly better. For both 

confidence intervals, the under-coverage is more acute when G  increases, and reduces when the sample 

size increases. 

 
Table 4.4 
Relative Bias, Relative Stability and Nominal One-Tailed Error Rates for linearization and Bootstrap variance 
estimation of the intersection estimator of the Gini Coefficient Change for 5 populations and with the MULT2 
sampling design  
 

Pop. Linearization  Bootstrap 
RB RS L U L+U  RB RS L U L+U 

 Sample sizes =m  300 and  1 3 2, , =i i in n n   (10; 10; 10) 

Pop. 1  1.23 33.8 0.6 4.9 5.5  1.09 33.2 0.6 6.0 6.6 
Pop. 2  0.64 41.1 0.8 5.5 6.3  -0.20 39.7 0.6 6.5 7.1 
Pop. 3  -0.42 48.7 0.7 7.1 7.8  -2.05 46.6 0.7 8.4 9.1 
Pop. 4  -2.07 56.4 0.8 8.4 9.2  -4.47 53.3 0.6 9.6 10.2 
Pop. 5  -4.44 63.7 0.9 9.2 10.1  -7.56 59.5 0.4 10.3 10.7 
 Sample sizes =m  300 and  1 3 2, , =i i in n n   (10; 20; 10) 

Pop. 1  1.70 32.6 1.5 4.9 6.4  -1.70 32.3 1.5 6.0 7.5 
Pop. 2  1.10 39.0 1.4 5.4 6.8  -1.91 38.3 1.5 6.9 8.4 
Pop. 3  0.17 45.6 1.2 7.4 8.6  -2.49 44.4 1.1 7.7 8.8 
Pop. 4  -1.17 52.0 1.0 9.0 10.0  -3.58 50.3 0.8 9.7 10.5 
Pop. 5  -3.03 57.9 0.9 10.4 11.3  -5.35 55.4 0.7 11.0 11.7 
 Sample sizes =m  300 and  1 3 2, , =i i in n n   (10; 40; 10) 

Pop. 1  -0.99 32.1 1.2 6.1 7.3  -3.21 32.2 1.7 6.7 8.4 
Pop. 2  -1.68 38.3 1.4 6.7 8.1  -3.70 38.3 1.4 7.6 9.0 
Pop. 3  -2.58 44.6 1.3 7.5 8.8  -4.40 44.5 1.2 8.9 10.1 
Pop. 4  -3.78 50.6 1.1 8.9 10.0  -5.50 50.1 0.9 10.6 11.5 
Pop. 5  -5.39 55.9 0.8 10.9 11.7  -7.16 54.8 0.6 12.8 13.4 

 
5  Conclusion 
 

In this paper, we considered the estimation of the change between Gini indexes. We presented the class 

of composite estimators introduced by Goga, Deville and Ruiz-Gazen (2009), and studied more particularly 

the intersection estimator which makes use of the common sample only, and the union estimator which 

makes use of the whole available samples. We justified both heuristically and through the simulation study 

in Section 4.2 that the intersection estimator can be close to the optimal estimator, while the union estimator 

exhibits poor performances in all the scenarios considered. The intersection estimator is also easy to 

compute, while the optimal estimator involves unknown quantities which need to be estimated in practice. 

We therefore advocate for the use of the intersection estimator for estimating the change between Gini 

indexes.  

We also compared linearization and bootstrap for variance estimation and for producing confidence 

intervals. In the scenarios that we considered in the simulation study, the linearization performed better with 

usually smaller relative biases for the variance estimator, and better coverage rates with normality-based 
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confidence intervals than with percentile confidence intervals. Bootstrap t  confidence intervals (not 

considered in the simulation study) would be a competitor of interest, but due to the intensive computational 

work involved, they are less attractive for a data user. Linearization has also the advantage to offer a unified 

approach suitable for any sampling design, while a specific sampling design usually requires a specific 

bootstrap procedure, as illustrated with the BWO for SI sampling and the BWR for multistage sampling.  

From the simulation study, we note that the coverage rates may not be well respected neither with 

linearization nor bootstrap, particularly in the multistage context and even with large sample sizes. There is 

a need for confidence intervals with better coverage rates under a reasonable computational burden. This is 

a matter for further research. 
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Appendix  
 

Proof of equation (3.6)  
 

From (3.3), we have   
co

= ,t N A X   where  2 3 1 3 3 32, 2, 1, 1, 2, 1,= , ,s s s s s sX y y y y y y      and 

 = , , 1 .A b a   This leads to  

                                                                 
co

2= .V t N A V X A   (A.1) 

We compute the elements in  V X  separately. We have  
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Similar arguments lead to 
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Finally, we consider  2 3 1 32, 2, 1, 1,Cov , .s s s sy y y y    We first compute  2 12, 1,Cov , ,s sy y   which may 

be written as 
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Similar arguments lead to  
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In summary, we obtain  
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which, along with (A.1), leads to (3.6). 
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