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Model based inference using ranked set samples 

Omer Ozturk and Konul Bayramoglu Kavlak1 

Abstract 

This paper develops statistical inference based on super population model in a finite population setting using 
ranked set samples (RSS). The samples are constructed without replacement. It is shown that the sample mean 
of RSS is model unbiased and has smaller mean square prediction error (MSPE) than the MSPE of a simple 
random sample mean. Using an unbiased estimator of MSPE, the paper also constructs a prediction confidence 
interval for the population mean. A small scale simulation study shows that estimator is as good as a simple 
random sample (SRS) estimator for poor ranking information. On the other hand it has higher efficiency than 
SRS estimator when the quality of ranking information is good, and the cost ratio of obtaining a single unit in 
RSS and SRS is not very high. Simulation study also indicates that coverage probabilities of prediction intervals 
are very close to the nominal coverage probabilities. Proposed inferential procedure is applied to a real data set. 

 
Key Words: Ranked set sampling; Finite population; Mean square prediction error; Sampling cost model; Coherent 

ranking; Concomitant ranking; Visual ranking. 

 
 

1  Introduction 
 

In many survey sampling studies, it is very common that the sampling frame has additional auxiliary 

information in addition to characteristic of interest. Under a fairly strong modeling assumption, this auxiliary 

information improves the statistical inference. For example, ratio and regression estimators use covariate 

information under a linearity assumption to estimate the population mean or total. The auxiliary information 

can also be used under a weaker assumption in a ranked set sample (RSS) and judgment post stratified (JPS) 

sample. These samples use auxiliary information to increase the information content of each measured unit 

through a ranking process. The ranking process is performed in a small set of size H  formed by combining 

the measured unit with an additional 1H   unmeasured units from the population. Ranking process is 

performed either before or after measurement and determines the relative position of each measured unit. 

Ranking information can be obtained from either a visual inspection or some other form of ranking process. 

A reasonable ranking mechanism requires some sort of monotonic relationship between the ranking variable 

and response, which is much weaker than the strong linearity assumption of regression and ratio estimators. 

A balanced ranked set sample of set size H  and cycle size d  can be constructed by first selecting 

=n Hd  simple random samples of size H  from the population and ranking the units in each sample 

without measurement from smallest to largest. In these n  ranked sets (samples), one then measures the units 

with rank 1 in the first d  sets, the unit with rank 2 in the next d  sets and so on. This yields samples of H  

different sets of judgment order statistics, each of which has d  independent and identically distributed 

judgment order statistics. 

A sharp contrast exists between an observation from SRS and RSS, where the observation from an SRS 

sample provides information only about the unit on which it was measured while the observation from an 

RSS sample, in addition to the information that the measured unit provides, also provides limited 
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information about the other  1H   unmeasured units in the set through the relative position (rank) of 

measured unit. Since ranking process does not require a formal measurement and is usually less expensive 

in comparison with formal measurement, the RSS sample provides substantial amount of reduction in 

sampling cost. 

A JPS sample differs from an RSS sample in that the ranking step comes after the construction of an 

SRS sample. Construction of a JPS sample of size n  requires a set size .H  Once the set size H  is 

determined, one first draws a simple random sample of size n  and makes a measurement on each of the n  

units. For each measured unit in the sample, one then selects additional 1H   units to form a set of size 

.H  The units in this set are ranked from smallest to largest without measurement and the rank of the 

measured unit in the set is recorded. The JPS sample then consists of n  measured values, together with their 

ranks. 

Both RSS and JPS samples induces a stochastic structure among measured units in which observations 

in judgment class h  are usually smaller than the observations in judgment class ,h < .h h  This stochastic 

ordering feature spreads the measured units in the support of the distribution and creates a better 

representative sample than a simple random sample. The nature of stochastic ordering in a JPS sample is 

significantly different from the stochastic ordering in an RSS sample. A JPS sample consists of a simple 

random sample and an associated rank vector. This rank vector is loosely related to the sample and may be 

ignored if desired. On the other hand, an RSS sample is measured as judgment order statistics, judgment 

ranks can not be separated from the observed values. An RSS sample can not be treated as an SRS sample. 

Both JPS and RSS sampling designs have generated extensive research interest in a finite population 

setting. Patil, Sinha and Taillie (1995) used ranked set sample to estimate population mean for a population 

of size N  when the sample is constructed without replacement. Takahasi and Futatsuya (1998) showed that 

the ranked set sample estimator of the population mean is more precise than the simple random sample 

estimator when samples are drawn without replacement from a finite population. Deshpande, Frey and 

Ozturk (2006) described three different sampling designs and constructed nonparametric confidence 

intervals for population quantiles. Al-Saleh and Samawi (2007), Ozdemir and Gokpinar (2007 and 2008), 

Gokpinar and Ozdemir (2010), Ozturk and Jozani (2013), Frey (2011) and Ozturk (2014, 2015, 2016a) 

computed inclusion probabilities and constructed Horwitz-Thompson type estimators for population mean 

and total based on a ranked set sample. These research papers show that an RSS design yields a substantial 

amount of improvement in efficiency over the usual simple random sampling design. Ozturk (2016b) 

developed estimators for population mean based on a JPS sample where he showed that the estimator needs 

a finite population correction factor similar to the one used in a simple random sample. 

All available research in literature in JPS and RSS sampling designs in a finite population setting 

considers design-based approach. To our knowledge, super population model has not been used. In this 

paper, we develop a model-based statistical inference using RSS sampling design for population mean and 

total in a finite population setting. Similar results, with some additional variation due to random judgment 

class samples sizes, can also be established for a JPS sampling design. Because of the random judgment 

class sample sizes, the estimators based on a JPS sample are less efficient than the estimators based on an 

RSS sample. For this reason, the JPS sample is not considered further in this paper. Section 2 clearly defines 
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the model and describes the sampling designs for RSS under super population model. We show that 

estimators of population mean and total are model-unbiased and their mean square prediction errors (MSPE) 

are smaller than the MSPE of the same estimators of an SRS sample. Section 3 constructs unbiased 

estimators for the MSPE and provides approximate confidence intervals for the population mean and total. 

Section 4 introduces cost models to account the effect of additional cost (excess of the cost of construction 

of SRS sample) in construction of RSS sample. Section 5 provides empirical evidence about the 

performance of the estimators. Section 6 applies the proposed estimators to an example in a finite population 

setting. Section 7 provides some concluding remarks. 

 
2  Sampling designs 
 

We consider RSS sampling designs from a super population model to draw statistical inference in a finite 

population setting. Let Y  be the characteristic of interest. The copies of ,Y 1, , ,NY Y  are considered as 

independent identically distributed (iid) random variables from a super population. Basic assumption for 

this super population model can be stated as  

     2
1Model: , , independent identically distributed with = , = .N M i M iY Y E Y V Y   (2.1) 

The subscript M  in model (2.1) is used to highlight that the mean and variance are computed based on a 

super population model, not the randomization distribution as in Ozturk (2016b). In this super population 

model,   and 2  represent unknown infinite population parameters. 

In super population model, a particular realization, 1, , ,Ny y  of random variables 1, , NY Y  from 

model (2.1), is considered as a finite population. Let  1= , ,N
NP y y  denotes this finite population. 

Ranked set sample is constructed from .NP  Without loss of generality, we assume that 

     1 2< < < Ny y y  are ordered values of 1, , Ny y  where  iy  is the thi  largest value of Y  in .NP  

Throughout the paper, H  and d  are used to denote the set and cycle sizes, respectively. 

To construct a ranked set sample, one selects a set of H  experimental units, 1 , , ,Hs sy y  at random 

from NP  and ranks them based on their Y  values in an increasing magnitude without actual measurement. 

Ranking process can be performed either using visual inspection or some auxiliary variables and hence 

subjected to ranking error. The unit that corresponds to the smallest ,Y  1 ,y  is identified and measured 

where the square bracket in the subscript, [1], denotes the rank of the smallest unit (rank 1) in the set 

      * *
1 2, , , .Hy y y  The remaining unmeasured units are denoted with     * *

2 , , .Hy y  After  1y  is 

measured, none of the H  units in the set       * *
1 2, , , Hy y y  are returned to the population. One then selects 

another set of H  experimental units at random from the remaining population N HP   and ranks them 

without measurement. This time, the unit that corresponds to the second smallest ,Y  2 ,y  is identified and 

measured in         * * *
21 3, , , , .Hy y y y  This process is continued until a simple random sample of size H  is 

taken from the reduced population  1N H HP    and the thH  smallest unit is identified and measured in the 

set         * * *
1 2 1, , , , .HHy y y y  This is called a cycle. A cycle selects H  disjoint sets, each of size H  and 

only measures H  units. The remaining  1H H   units are used only for ranking purposes. The cycles are 

repeated d  times to yield a ranked set sample of size =n dH  units. A ranked set sample can then be 

represented as  
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           * * * *
, , 1 1 1= , , , , , , , = 1, , , = 1, , ,h i H h ii h i h i H iW y y y y y h H i d      (2.2) 

where only   ,h iy = 1, , , = 1, , ,h H i d   are measured. The other values are used to obtain the rank of 

the measured values. Units in sets , ,h i HW  and , ,h i HW    are all independent if either h h  or ,i i  but the 

units in , ,h i HW  are all correlated since they are ranked in the same set. Under model (2.1), means, variances 

and covariances of judgment order statistics are given by  

 

         

  
 

2

[ , ] [ ]

[ ]

= , Var = ,

if , are from the same set
Cov , =

0 otherwise.

M h i h M h i h

h h h i h i

M h i h i

E Y Y

Y Y
Y Y

 

  






  

It should be noted that since all sets are disjoint no units can be used more than once in any one of the 

sets. Hence all sample units are distinct. Since the sets are independently ranked   ’sh iY  are mutually 

independent. Observations having the same rank ,h   ,h iY = 1, ,i d  are identically distributed. 

Estimator of the population mean   based on RSS data in equation (2.2) can be defined as follows. 

  
=1 =1

1
= .

H d

R h i
h i

Y Y
dH

  (2.3) 

It can be immediately observed that the estimator RY  is model unbiased. In other words, under the model 

(2.1),   = 0,M R NE Y Y  where 1
=1

= .
N

N iN i
Y Y  

We now consider the mean square prediction error (MSPE) of the estimator RY  under model (2.1)  

    
2

2

=1

1
MSPE = = .

N

M R M R i M R N
i

Y E Y Y E Y Y
N

   
 

   

Since the predictor RY  is model unbiased for ,NY   = 0,M R NE Y Y  the mean square prediction error 

(MSPE) of RY  is the same as  Var .M R NY Y  
 

Theorem 1: Let   , = 1, , , = 1, , ,h iY h H i d   be a ranked set sample from a finite population .NP  Under 

a super population model in equation (2.1), the mean square prediction error of the estimator RY  is given 

by  

      22 2
RSS

=1

1
= MSPE = .

H

M R h
h

N n
Y

Nn nH
   


   (2.4) 

We note that expression on equation (2.4) is very similar to the sample variance of an infinite population 

RSS sample. Only difference is due to the coefficient .N n
Nn
  In infinite population setting the fraction N n

Nn
  

in equation (2.4) becomes 1 .n  Hence,  1 n
N  is the finite population correction (fpc) factor for the variance 

of RSS sample mean. If the sample size is not small in comparison with the population size ,N  the fpc, 

,N n
Nn
  makes a correction on the variance of an RSS sample mean. This correction would be substantial if n  

is relatively large with respect to .N  If n  is small, fpc is close to 1 and the impact of finite population 

correction factor is minimal. 
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Corollary 1: Assume that n  and N  increase in such a way that the ratio n
N  approaches to a limit at ,a

= .lim n
n N a  

(i) If > 0,a 2
RSS  converges to a simple form  

                  22 2

=1

1
= 1 ,lim

H

hRSS
n h

n a
H

   


     

(ii) if = 0,a  
12 2= ,limn RSS hHn   which is the same as the variance of the sample mean of a 

balanced ranked set sample in an infinite population setting,  

(iii) if a  is strictly positive, then  
12 2< .limn RSS hHn   

 

The corollary indicates that when sample and population sizes grow at a certain rate, variance of sample 

mean of an RSS  2
RSS  sample in a finite population setting reduces to simple form. If a  is strictly positive, 

variance of an RSS sample mean is smaller than the variance of an RSS sample mean in an infinite 

population setting. 

 
3  Unbiased estimators 
 

In this section, we construct an unbiased estimator for 2
RSS.  By rewriting the estimator for 2

RSS  in a 

slightly different form, we obtain 

                                                      

  

 

 

22 2
RSS

=1

22 2

=1

22

=1

1
=

1 1 1
=

1 1
= .

H

h
h

H

h
h

H

h
h

N n

Nn nH

H
n N nH

N nH

   

  

 

    
 

        

   
 







  

Let  

                                                         

  

 
    

2*
1 [ ]

2 2
=1 =1 =1

2*
2

2
=1 =1

1
=

2

1
= .

2 1

H H d d

h i h j
h h h i j

H d d

h i h j
h i j i

T Y Y
d H

T Y Y
d d H














  

Using these definitions, one can easily establish the following result. 
 

Theorem 2: Let   ,h iY = 1, , , = 1, ,i n h H   be an RSS sample of set size H  from a finite population. 

An unbiased estimator of 2
RSS  is given by  

                                                       2 * * *
2 1 2

1
ˆ = .RSS

H
T T T

n N
    

 
 (3.1) 
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Theorem 2 indicates that the variance estimator is unbiased for any sample and set sizes regardless of 

the quality of ranking information. Unbiased estimator of the variance of RY  allows us to construct 

confidence interval for population mean and total. Using normal approximation,  1 100%  confidence 

interval for the population mean is given by  

 2
, 2 RSSˆ ,R n HY t     

where ,df at  is the tha  upper quantile of t  distribution with degrees of freedom .df  The degrees of freedom 

n H  is suggested to account the heterogeneity among H  judgment classes. The choice of =df n H  

is also suggested in Ahn, Lim and Wang (2014) in infinite population setting. 

 
4  Cost model 
 

Efficiency improvement of the RSS estimator results from the relative position (rank) information of the 

measured observation among unmeasured 1H   units in a set. This extra information comes at the cost of 

sampling a set of size H  and obtaining the subsequent ranking. Ranking can be performed either using 

concomitant (auxiliary) variable or visual inspection of the physical units in each set. Hence, these two 

approaches, visual and concomitant ranking models, may lead to different cost structures. In either case, 

there needs to be some sort of consistency in ranking process to develop a meaningful cost function. Patil, 

Sinha and Taillie (1997) defined a coherent ranking process in which ranking of a set is consistent for all 

subsets and supersets. Under a coherent ranking scheme, the rank order of H  units would remain identical 

when ranking any of their subsets or supersets containing them. For further detail in coherent ranking, 

readers are referred to Patil et al. (1997) or Nahhas, Wolfe and Chen (2002). 

Concomitant ranking uses an auxiliary variable to rank H  units in a set. The quality of ranking depends 

on monotonic (not necessarily to be linear) relationship between the variable of interest and auxiliary 

variable. On the other hand, visual inspection can be performed in different ways. One of the strategy is to 

use pairwise comparison. Under coherent ranking, not all  2
H  pairwise comparisons are necessary for a 

visual ranking. For example, in a set of size = 3,H  if unit 1 is judged to be smaller than unit 2 and unit 2 

is smaller than unit 3, we reasonably assume unit 1 is less than unit 3 without a comparison. In order to 

differentiate the impact of the cost structures of the concomitant and visual ranking schemes, we denote the 

estimator in equation (2.3) with RCY  for concomitant ranking and RVY  for visual ranking. 

For visual ranking, we use visual inspection model of Nahhas et al. (2002). This model always compares 

the selected unit with the largest element previously ranked. It chooses a unit at random and compares it 

with the unit previously judged to be largest. If it is judged to be larger, then it becomes the largest among 

all judged units. Otherwise, it is compared with the next largest previously judged unit until it is assigned a 

rank. The number of required pairwise comparisons under this ranking strategy with a coherent ranking 

scheme is an integer valued random variable having the support  2
1, , 1, , .HH H H    The expected 

number of pairwise comparison for this ranking scheme is approximately equal to   =f H  

   2 1 4.H H   The reader is referred to Nahhas et al. (2002) for further development on expected 

number of pairwise comparisons. 
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We now introduce cost definitions for three models; concomitant, visual ranking and simple random 

sampling models: =CC  total cost for concomitant ranking, =VC  total cost for visual ranking, =SC  total 

cost for simple random sampling, =ic  cost of sampling a single unit, =qyc  cost of quantification of the 

variable of interest  Y  for one unit, =qxc  cost of quantification of concomitant (auxiliary )X  variable for 

one unit, =rc  cost of one pairwise comparison. We assume that overhead cost in SRS model to be zero, 

but the overhead cost (in excess of the overhead cost of SRS) of RSS concomitant (visual) ranking model 

is absorbed in   .qx rc c  Total cost for these three models are then given by  

       = , = , = ,S s i qy C c i qx qy V V i qyC n c c C n Hc Hc c C n Hc f H c       

where ,S Cn n  and Vn  are the total (measured) observations in SRS, RSS concomitant and RSS visual 

ranking models. Readers are referred to Nahhas et al. (2002) for further details on these cost functions. 

We now fix the total cost on these three models = = = .S C VC C C C  Under this fixed cost, we look at 

the relative efficiency of RCY  and RVY  with respect to SRS sample mean SRS .Y  Let  

    2

2
=1

1 1
RP = , = 1 ,

1

H

h
h

D
D H

 


 
    

where RP is the relative precision of RSS sample mean with respect to SRS sample mean in an infinite 

population setting. Under super population model, we can establish the following efficiency result. 
 

Theorem 3: Let   ,h iY = 1, , ,h H = 1, , ,i d  be a ranked set sample from a finite population .NP  For 

a fixed cost, under super population model and coherent ranking scheme, the following efficiency results 

are established.  

 

   
 

   
 

 

SRS
RC SRS

RC

SRS
RV SRS

RV

Var
RE , = 1, if RP

Var

Var
RE , = 1, if RP .

Var

i qx qy

i qy

i r qy

i qy

Y Hc Hc c
Y Y

Y c c

Y Hc f H c c
Y Y

Y c c

 
 



 
 



  

The fractions on the right hand side of the inequalities in the above theorem is the ratio of the cost of 

selecting and measuring a single unit in RSS and SRS, respectively. If the cost of sampling a unit and cost 

of ranking a set are negligible (free), the cost ratio becomes 1. One of the basic assumptions, in settings 

where RSS is used, is that ranking cost of units is relatively cheap with respect to the cost of measurement. 

Hence, it is not unreasonable to assume that cost ratio will be very close to 1 for settings where use of RSS 

is appropriate. It is established in the literature that RP is always greater than or equal to 1 (see Dell and 

Clutter (1972), Patil et al. (1997), Nahhas et al. (2002)). It is equal to 1 only under random ranking. The 

values of RP for normal population for different values of   (correlation coefficient between response Y  

and auxiliary variable )X  and set sizes are given in Table 4.1. It is now reasonable to say that RSS estimator 

under super population model is more efficient if the cost of sampling and ranking a unit is relatively cheap 

in comparison with measurement cost. 
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Table 4.1 
Relative precision (RP) of RSS sample mean with respect to SRS sample mean under infinite population setting 
for normal distribution  0, 1 .N   is the correlation coefficient between response and auxiliary variable, and 
H  is the set size 

 

  = 2H  = 3H  = 4H = 5H  = 6H  
1.00 1.467 1.914 2.347 2.770 3.186 
0.90 1.347 1.631 1.869 2.073 2.251 
0.75 1.218 1.367 1.477 1.561 1.628 
0.50 1.086 1.136 1.168 1.190 1.207 

 
5  Empirical results 
 

In this section, we conduct a simulation study to check the finite sample properties of the estimator for 

different values of simulation parameters. Data sets are generated from normal  = 10, = 4   and log 

normal  = 0, = 1   super populations. We consider two different finite populations with population 

sizes =N  150 and =N  1,000 to see the impact of population sizes on the estimators. Sample and set size 

combinations  ,n H  are selected to be (10, 2), (15, 3), (20, 4), (25, 5). The quality of ranking information 

is modeled through a perceptual error model in Dell and Clutter (1972). The Dell and Clutter model 

considers two variables, the variable of interest Y  and a correlated ranking variable .X  The ranking 

variable is modeled through an additive model = ,X Y    where   is a random noise generated 

independently with respect to .Y  To implement the perceptual error model, we generate a set (size )H  of 

simple random sample,  1 2= , , , ,HY Y YY   from the true population of interest with mean   and variance 
2.  Another set (size )H  of random numbers are generated from a normal distribution with mean zero and 

variance, 2,   1 2= , , , .H    The perceptual error model is then defined by =i i iX Y    

= 1, 2, , .i H  The random numbers  ,i iX Y  are ranked with respect to the first components   iX  and 

the second components are taken to be the judgment ranked order statistics   .iY  The quality of the ranking 

information is controlled by the correlation coefficient between Y  and ,X    2

22

1 2
= corr , = .Y X 

   
 

Since the units are ranked based on concomitant variable ,X  the ranking model is equivalent to concomitant 

ranking in Section 3. In the simulation study, we used = 1  for perfect ranking and =  0.75, 0.50 for 

imperfect ranking. 

In each replication of the simulation, a finite population of size NP  is generated from the normal super 

population with specified mean   and standard deviation ,  1= , , .N
NP y y  A ranked set sample is 

then constructed from this finite population, a realization from normal super population, with specified set 

and cycle sizes. The quality of ranking information in each RSS sample is controlled generating random 

noise vector   with specified   (or equivalently )   in the perceptual error model. The simulation size is 

taken to be 50,000. 

Simulation results are presented in Tables 5.1, 5.2, 5.3 and 5.4. There are several features that need to 

be discussed in these tables. For different   and sample size combinations  , ,n H  the relative efficiencies 

of the RSS estimator with respect to the SRS estimator are given by  

 
 
 

SRS
RC

RC

RE =
V Y

V Y
 (5.1) 
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where  SRSV Y  and  RCV Y  are the MSPE of SRS and RSS sample means from the simulation study under 

a super population model in equation (2.1), respectively. In equation (5.1), the relative efficiency values 

 RCRE  greater than one indicate that the RSS estimator is more efficient than the SRS estimator. In all 

these tables, the RSS sample mean estimator performs better than the SRS estimator. Its efficiency is an 

increasing function of set size H  and correlation coefficient   as expected. Under the concomitant cost 

model, if the cost ratio of obtaining a unit in RSS and a unit in SRS is less than the RP values in Table 4.1, 

the RSS sample mean has higher efficiency than the SRS sample mean. 

The impact of the finite population size N  can be observed by comparing the efficiency results in 

Tables 5.1 and 5.2 for the normal super population and Tables 5.3 and 5.4 for the lognormal super 

population. When > 0.50, relative efficiencies  RCRE  are higher in Table 5.1  = 150N  than Table 5.2 

 = 1,000 .N  In Table 5.1, finite population correction factor is smaller than the finite population correction 

factor in Table 5.2. Hence, the reduction in MSPE is smaller in RSS estimator. Similar effect is also 

observed in Tables 5.3 and 5.4. 

The simulation study also investigated the properties of the MSPE estimator of RSS sample mean 

estimator. Theoretical value of the MSPE estimator is given under the heading 2
RSS  when =  1.0. The 

simulated (unbiased) MSPE estimate is given in columns 5 (6) in Tables 5.1-5.4. It is very clear that 

simulated and unbiased MSPE estimates are almost identical when 1   as expected. Under perfect 

ranking  = 1  theoretical MSPE values, and the simulated and unbiased MSPE estimates are all close to 

each other within the simulation variation. 

The coverage probabilities of the confidence intervals are given under the heading  RCC Y  in column 7 

in Tables 5.1-5.4. In Tables 5.1 and 5.2, the coverage probabilities of the confidence intervals based on t 
approximation are reasonably close to the nominal coverage probability 0.950. On the other hand, the 

coverage probabilities in Tables 5.3 and 5.4 are smaller than the nominal coverage probability 0.95 for 

lognormal super population. The coverage probabilities are getting closer to nominal values when the 

sample size increases. This indicates that for skewed populations, sample sizes should be large enough to 

have a reasonable coverage probability for the confidence intervals. 
 

Table 5.1 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a normal super population with = 10, = 4  and 
population size =N 150 
 

     Est. from equations Est. from simu. UE estimates Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 1.493 1.355 1.365 0.949 1.102 
3.0 0.50 - 0.960 0.840 0.833 0.947 1.143 
4.0 0.50 - 0.693 0.572 0.578 0.948 1.213 
5.0 0.50 - 0.533 0.435 0.432 0.948 1.226 
2.0 0.75 - 1.493 1.195 1.205 0.949 1.250 
3.0 0.75 - 0.960 0.675 0.674 0.947 1.423 
4.0 0.75 - 0.693 0.433 0.436 0.946 1.600 
5.0 0.75 - 0.533 0.302 0.304 0.945 1.768 
2.0 1.00 0.984 1.493 0.974 0.984 0.948 1.534 
3.0 1.00 0.451 0.960 0.455 0.451 0.940 2.111 
4.0 1.00 0.234 0.693 0.233 0.235 0.936 2.971 
5.0 1.00 0.124 0.533 0.125 0.126 0.922 4.273 
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Table 5.2 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a normal super population with = 10, = 4  and 
population size =N 1,000 
 

    Est. from equations Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 1.584 1.461 1.455 0.950 1.084 
3.0 0.50 - 1.051 0.931 0.924 0.949 1.129 
4.0 0.50 - 0.784 0.665 0.670 0.950 1.180 
5.0 0.50 - 0.624 0.524 0.522 0.950 1.191 
2.0 0.75 - 1.584 1.304 1.295 0.949 1.215 
3.0 0.75 - 1.051 0.770 0.765 0.948 1.365 
4.0 0.75 - 0.784 0.525 0.526 0.951 1.494 
5.0 0.75 - 0.624 0.392 0.395 0.951 1.590 
2.0 1.00 1.075 1.584 1.075 1.076 0.950 1.473 
3.0 1.00 0.541 1.051 0.538 0.541 0.951 1.954 
4.0 1.00 0.325 0.784 0.327 0.325 0.949 2.398 
5.0 1.00 0.215 0.624 0.217 0.215 0.948 2.877 

 

Table 5.3 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a log-normal super population with = 0, = 1  
and population size =N 150 
 

    Est. from equations Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 0.436 0.400 0.400 0.852 1.089 
3.0 0.50 - 0.280 0.243 0.242 0.869 1.153 
4.0 0.50 - 0.202 0.160 0.162 0.883 1.262 
5.0 0.50 - 0.156 0.117 0.116 0.886 1.336 
2.0 0.75 - 0.436 0.371 0.372 0.855 1.176 
3.0 0.75 - 0.280 0.216 0.217 0.867 1.300 
4.0 0.75 - 0.202 0.146 0.146 0.874 1.388 
5.0 0.75 - 0.156 0.103 0.103 0.878 1.514 
2.0 1.00 0.362 0.436 0.361 0.364 0.839 1.207 
3.0 1.00 0.201 0.280 0.197 0.198 0.849 1.423 
4.0 1.00 0.128 0.202 0.128 0.127 0.847 1.586 
5.0 1.00 0.086 0.156 0.085 0.085 0.845 1.833 

 

Table 5.4 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean. Data sets are generated from a log-normal super population with = 0, = 1  
and population size =N 1,000 
 

    Est. from equations Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
RSS  2

SRS   RCV Y  2
RSS̂   RCC Y  RCRE  

2.0 0.50 - 0.462 0.432 0.433 0.851 1.070 
3.0 0.50 - 0.307 0.263 0.263 0.868 1.164 
4.0 0.50 - 0.229 0.189 0.190 0.882 1.208 
5.0 0.50 - 0.182 0.141 0.141 0.889 1.296 
2.0 0.75 - 0.462 0.413 0.413 0.852 1.119 
3.0 0.75 - 0.307 0.240 0.238 0.868 1.276 
4.0 0.75 - 0.229 0.171 0.170 0.878 1.337 
5.0 0.75 - 0.182 0.129 0.129 0.884 1.415 
2.0 1.00 0.389 0.462 0.387 0.386 0.839 1.195 
3.0 1.00 0.228 0.307 0.225 0.227 0.852 1.364 
4.0 1.00 0.154 0.229 0.155 0.155 0.857 1.479 
5.0 1.00 0.113 0.182 0.113 0.113 0.862 1.614 
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6  Example 
 

In this section we apply the proposed estimators to a data set which contains a sheep population in a 

research farm at Ataturk University, Erzurum, Turkey. Data set contains birth weights, mothers’ weights at 

mating and the weights at the 7th month after birth for 224 lambs. The entire data set is given in Hollander, 

Wolfe and Chicken (2014, page 709). Variable of interest is the weights  Y  at the 7th month after birth for 

224 lambs. We use birth weights  1X  and mothers’ weights  2X  at mating as auxiliary variables to 

perform ranking process. The ranking variables are positively correlated with the variable of interest .Y  

The correlation coefficient   = corr ,X Y  between 1 ,X Y  and 2 ,X Y  are 0.8425 and 0.5941, 

respectively. The histogram of the variable of interest, ,Y  is roughly symmetric. Mean and variance of Y  

are =NY  28.125kg and 2 =NS  15.23kg2, respectively, where  224 22
=1

= 223.n i N
i

S Y Y  We treated 

these 224 lambs as a realization from a super population having finite mean   and variance 2.  We 

constructed samples based RSS sampling design using this finite population. Samples are generated for 

sample and set size combinations,  , ,n H  (10, 2), (15, 3), (20, 4), (25, 5). Simulation size is taken to 

be 50,000. 

In this example, we incorporate the sampling cost to RSS and SRS sampling designs with concomitant 

ranking in RSS. We first need to determine reasonable costs associated with various aspects of RSS. Weight 

measurement is obtained from seven-month-old lambs. These animals are very active and measurement cost 

is substantial. The measurement process usually require three people for separating the lamb from the flock, 

bringing it to scale, holding it firm during the measurement. Suppose that the farm employs the workers in 

an annual salary of $50,000. This corresponds to a rate of approximatley $25 per hour per person. Assume 

that the measurement of a lamb takes about 5 minutes. The measurement cost for a lamb then would be 

about  = 3 25 12 6qyc   for three workers. Ranking will be performed using auxilairy variables 1X  and 

2.X  These variables are maintained in the data base for some other purposes. Only cost to sampling would 

be due to personal cost for ranking. Ranking will be performed in the office by selecting sets at random 

from the data base and ranking them based on auxiliary variables. Suppose that ranking a set of size H  

takes about 1/2 minute. This leads to ranking cost of = $0.21.qxHc  We may assume that cost related to 

identification of a unit in the population is negligible  = 0 .ic  Under these stipulations, the cost ratio of 

selecting and measuring a unit in RSS and SRS is given by    ratio = =i qx qy i qyHc Hc c c c    

 6 0.21 6 = 1.035.  Since this ratio is less than all entries in Table 4.1, we anticipate that RCY  provides 

higher efficiency than SRS.Y  

Table 6.1 presents the estimated MSPE and relative efficiency of RSS esimator as well as the coverage 

probability of the confidence interval of   for different   and sample size combinations. It is clear that the 

RSS estimator outperform the SRS estimator for all simulation parameter combinations. Estimated MSPEs 

and coverage probabilities also show similar behaviors as in Section 3. The estimated MSPE values are very 

close to the simulated MSPE values. The coverage probabilities of the confidence intervals based on t 

approximation appear to be very close to the nominal coverage probabiliy, 0.950. 
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Table 6.1 
MSPE estimate and relative efficiency of RSS sample estimator, and coverage probability of a 95% confidence 
interval of population mean of a sheep population of size =N 224 

 

 Est. from equation Est. from simu. UE estimate Coverage prb. Relative eff. 

H    2
SRS   RCV Y  2

RSS̂   RCC Y  RCRE  

2.0 0.59 1.453 1.279 1.275 0.946 1.136 
3.0 0.59 0.946 0.776 0.774 0.948 1.219 
4.0 0.59 0.693 0.536 0.537 0.948 1.293 
5.0 0.59 0.540 0.399 0.402 0.948 1.353 
2.0 0.84 1.453 1.107 1.105 0.945 1.312 
3.0 0.84 0.946 0.600 0.602 0.946 1.576 
4.0 0.84 0.693 0.377 0.382 0.946 1.839 
5.0 0.84 0.540 0.263 0.264 0.944 2.056 

 
 
7  Concluding remarks 
 

We have developed a model based statistical inference for population mean and total based on RSS 

samples in a finite population setting where samples are constructed by using a without replacement 

sampling design. It is shown that the sample mean of RSS samples are model unbiased and they have smaller 

mean square prediction error (MSPE) than the MSPE of a simple random sample mean. We constructed 

unbiased estimator for the MSPE and prediction confidence interval for the population mean. A small scale 

simulation study showed that estimators are as good as or better than SRS estimators when the quality of 

ranking information in RSS sampling is low or high, respectively, and the cost ratio of obtaining a unit in 

RSS and a unit in SRS is not too high. The coverage probabilities of the prediction intervals are also very 

close to the nominal coverage probabilities. Proposed sampling designs and inferential procedures are 

applied to a data set containing a sheep population in an agricultural research farm. 
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Appendix 
 

Proof of Theorem 1: We write mean square prediction error (MSPE) as  

    

2 2

=1 =1 =1 =1

1 1 1
MSPE = = .

N H d N

M R M R i M h i i
i h i i

Y E Y Y E Y Y
N dH N

       
   

     
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Let ,iZ = 1, , ,i N nH  be the responses on N nH  population units that are neither measured nor 

used in ranking in any one of the randomly selected sets of size H  in the construction of the RSS sample. 

Then the MSPE can be written  

                         

2

*
[ ]

=1 =1 =1 =1 =1

1 1 1
MSEP =

H d H d H N nH

M R M h i h i h i i
h i h i h h i

Y E Y Y Y Z
dH N N






        
      

where *
[ ] ,h iY  , ,h h   are responses on unmeasured units that are used in ranking of units in a set. Hence, 

*
[ ]h iY   and  h iY  are correlated, but they are uncorrelated with .iZ  Let  

 ,

=
=

1 .

h h

N n
h h

nc

h h



 

  

  

Using the definition of , ,h hc   we combine *
[ ]h iY   and  h iY  under the same summation and write the MSPE as 

                   

    
 

 

,
2

=1 =1 =1 =1

,
2

=1 =1 =1 =1

2 2
,, , [ , ][ ]2 2

=1 =1 =1 =1

=1

1 1
MSPE = var var

1 1
= var var

=

1
var

H d H N nH

M R h i ih h
h i h i

H d H N nH

h i ih h
h i h i

H H H H H

h th h h h h th
h h h h t h

N

i

Y c Y Z
N N

c Y Z
N N

d d
c c c

N N

N

 











  
  



   
 

         

  
 



 

  

  

  2

2
= .

nH

iZ

N nH
A B

N



 
 
 


 



 

(A.1)

 

The expression A  reduces to  

                                      

     

   
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=1
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h h h h h hh
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N n
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

 




      
  

 


  

In a similar fashion, the expression B  reduces to  
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By inserting expressions A  and B  in equation (A.1), we conclude that  

                        

     

       

  
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=

H

M R h
h

H H

h h
h h

H

h
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d N n
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N n

d N n
H H H H

N n

N nH

N

N n

Nn nH


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

  
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  

              

   
 

    
 



 



  

which completes the proof. Note that to establish the last equality we used the fact that 2 =  

     22
=1 =1

.
H H

hhh h
H H      

 

Proof of Theorem 2: We first look at the expected values of *
1T  and *

2T  under the super population model 

in equation (2.1)  

                                   

        

   

2 2 2* 2
1

2 2
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2*
2

2
=1

1 1 1
= =

1
= .

H H H

h h h
h h h

H

h
h

H
E T

H H H

E T
H

    


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    


  

It is now easy to establish that  * * 2
1 2 = .E T T   The proof is then completed by inserting these 

expressions in equation (3.1). 
 

Proof of Theorem 3: We sketch the proof for  RC SRSRE , .Y Y  From the total cost function, we write  

 = and = ,S R
i qy i qx qy

C C
n n

c c Hc Hc c  
  

where C  is the fixed total cost. Using these expressions, we have  

                       

   
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
 

 
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We now establish that  RCRE , SRS 1Y   if and only if  

                                  

   1 =
RP
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i qx qy
i qy i qx qy

i qx qy

i qy

Hc Hc c
c c Hc Hc c D

Hc Hc c

c c

 
    

 




  

which completes the proof. 
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