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Tests for evaluating nonresponse bias in surveys 

Sharon L. Lohr, Minsun K. Riddles and David Morganstein1 

Abstract 

How do we tell whether weighting adjustments reduce nonresponse bias? If a variable is measured for everyone 
in the selected sample, then the design weights can be used to calculate an approximately unbiased estimate of 
the population mean or total for that variable. A second estimate of the population mean or total can be calculated 
using the survey respondents only, with weights that have been adjusted for nonresponse. If the two estimates 
disagree, then there is evidence that the weight adjustments may not have removed the nonresponse bias for that 
variable. In this paper we develop the theoretical properties of linearization and jackknife variance estimators for 
evaluating the bias of an estimated population mean or total by comparing estimates calculated from overlapping 
subsets of the same data with different sets of weights, when poststratification or inverse propensity weighting is 
used for the nonresponse adjustments to the weights. We provide sufficient conditions on the population, sample, 
and response mechanism for the variance estimators to be consistent, and demonstrate their small-sample 
properties through a simulation study. 

 
Key Words: Inverse propensity weighting; Poststratification; Replication variance estimation; Responsive design. 

 
 

1  Introduction 
 

Nonresponse rates in probability samples are increasing worldwide. The U.S. Office of Management and 

Budget requires a nonresponse bias analysis when response rates are low or there are other indications that 

bias may be a problem (United States Office of Management and Budget 2006). Groves (2006) 

recommended using multiple approaches to assess potential nonresponse bias on key survey estimates. 

Assessing potential nonresponse bias typically requires an external “gold standard” data source or rich 

sampling frame information. Common approaches for assessing nonresponse bias include: (1) comparing 

frame variables for respondents and nonrespondents, (2) comparing early and late respondents on frame 

variables and key survey variables, and (3) comparing estimates from the survey respondents (using 

nonresponse-adjusted weights) with estimates from an independent gold standard source. Differences in (1) 

and (2), however, do not necessarily imply that nonresponse bias remains after the weights are adjusted 

through calibration or propensity methods. If weight adjustments such as those described in Brick (2013) 

are successful in adjusting for nonresponse bias, the estimates from the survey using the nonresponse-

adjusted weights may be approximately unbiased even if assessments (1) and (2) show differences. 

In this paper we compare an estimate calculated using base weights from the selected sample with an 

estimate of the same quantity calculated using nonresponse-adjusted weights from the respondents only. An 

example might be comparing the estimated proportion of persons living in census tracts with more than 50% 

of housing units being owner occupied from (1) the selected sample, using the base weights, (2) the 

respondents, using the base weights, and (3) the respondents, using nonresponse-adjusted and/or 

poststratified weights. All three estimates of the proportion use the same characteristic, ,y  which is assumed 

to be known for everyone in the selected sample. 
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The requirement that y  be known for the selected sample restricts the set of variables that can be used 

to test for nonresponse bias. Typically, many of the key variables of interest are available only for the 

respondents, not for the entire selected sample. Other variables that are available for the entire selected 

sample may be used for poststratification or other nonresponse weighting adjustments. Poststratification 

forces the estimates of population totals for poststratification variables to equal the independent population 

counts for these variables, so these variables would not be expected to exhibit nonresponse bias after weight 

adjustments are performed. Variables that are available for the entire selected sample but are not used in the 

nonresponse weighting adjustments, and variables that are correlated with key survey variables, are the best 

choices for testing nonresponse bias. Examples of such variables include sample frame variables that are 

not used in poststratification (for example, an e-mail survey of university students may have information on 

academic performance that is not used in the nonresponse weighting), characteristics from a census (such 

as percent poverty in the block containing the sampled address), or information gathered by the interviewer 

(such as indications of children in the household that are visible from the street). 

Eltinge (2002) and Harris-Kojetin (2012) recommended comparing estimates using different sets of 

weights to assess nonresponse bias and to choose among competing sets of nonresponse-adjusted weights. 

Such comparisons are common in nonresponse bias analyses: for example, Hamrick (2012) compared 

respondents with the full sample in the Eating and Health Module of the American Time Use Survey. To 

date, however, there has been no comprehensive examination of the statistical properties underlying these 

comparisons. In this paper, we derive the theoretical properties of variance estimators and hypothesis tests 

for the differences among estimated means that are calculated using the same outcome variable but with 

different weights and subsets of the data, and give conditions that will ensure consistency of the variance 

estimators. 

Poststratification or inverse propensity weighting are commonly used to compensate for nonresponse 

bias. Yung and Rao (2000) derived linearization and jackknife estimators for the variance of a population 

mean estimated using poststratification, with and without nonresponse. They considered a uniform response 

mechanism in which each poststratum has the same response propensity, and considered the response 

indicator to be a fixed characteristic of the finite population. Kim and Kim (2007) studied asymptotic 

properties for inverse propensity weight adjustments, assuming that the response indicators of different units 

are independent. The previous work studied the variance of the poststratified or inverse-propensity-weighted 

statistic of interest. The problem we consider differs from the previous work because the estimated 

population total from the selected sample is often highly correlated with the estimate calculated using the 

respondents only, particularly when the response rate approaches one. The linearization and replication 

variance estimators in this paper account for that high correlation between the two sets of estimates, and 

thus can be used for testing the hypothesis that the poststratification or inverse propensity weighting 

removes the bias for the variables studied. We also extend previous research by allowing the response 

indicators to be correlated within primary sampling units, reflecting possible within-cluster homogeneity 

for responding to the survey. 

Section 2 defines the parameter to be tested in the poststratification setting, derives the linearization and 

jackknife variance estimators, and gives sufficient conditions for the variance estimators to be consistent. 

In some circumstances the linearized variance of the test statistic may be zero under the null hypothesis, in 
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which case higher-order terms of the variance are needed. The higher-order terms are derived for the special 

case of simple random sampling in Theorem 3. Section 3 provides the linearization and jackknife variance 

estimators for testing the hypothesis that the propensity weights remove the nonresponse bias. Section 4 

presents simulation studies and Section 5 contains concluding remarks and discusses future work. 

 
2  Poststratification 
 
2.1  Parameter and linearization variance 
 

Suppose the finite population U  has H  strata, with hN  primary sampling units (PSUs) in stratum ,h  

hiM  units in PSU i  of stratum ,h  and = hihi
M M  units in total. Let hiky  denote the quantity of interest 

for unit k  in PSU   .hi  A probability sample S  is taken from the population, with hn  PSUs selected from 

stratum h  and 
=1

= .
H

hh
n n  The sample of PSUs from stratum h  is denoted by ,hS  and the sample of 

units from PSU  hi  is denoted by .hiS  Each unit has a design weight  = 1 unit ,hikw P hik S  and the 

PSU-level design weight is  = 1 PSU .hi hw P hi S  

Two frameworks are commonly used for the nonresponse mechanism. In a two-phase “forward” 

framework, the sample is selected at phase 1 and the nonresponse mechanism is a second phase of selection 

(Oh and Scheuren 1987; Särndal and Lundström 2005). Fay (1991) proposed a “reverse framework” which 

was studied further by Shao and Steel (1999) and Haziza, Thompson, and Yung (2010). In this framework, 

the nonresponse mechanism is applied to the finite population first, and then the sample is selected. The 

reverse framework, which we follow in this paper, specifies a nonresponse mechanism for nonsampled as 

well as sampled units. We assume that every unit in the population has a value of the response indicator 

.hikr  Let  =hik hikR E r  under the response mechanism in the finite population, so that hikR  is the value of 

the true response propensity for unit  hik  in the population. 

Suppose the characteristic y  is known for all units in the selected sample. We compare the estimated 

population total using everyone in the sample with the estimated total using the poststratification-weighted 

respondents. There are C  poststrata and poststratum c  has cM  population units with 
=1

= .
C

cc
M M  The 

poststratum counts cM  may be obtained from the sampling frame if the poststratification variables are 

known for every unit in the frame. Often, however, the poststratum counts come from an external source 

such as a census. Let = 1chik  if unit  hik  is in poststratum c  and 0 otherwise. The population response 

rate in poststratum c  is = .c hik chik chik U
p R M

  Yung and Rao (2000) assumed that the response rate 

cp  was the same for each poststratum. In many applications, however, the poststrata are formed so that 

response propensities within each poststratum are homogeneous, but the poststrata themselves have 

different mean response propensities. We therefore allow cp  to differ among the poststrata. 

If y  is known for all members of the selected sample, then the estimator of the population total using 

the sample is  

 ˆ = = ,SS hik hik hik hik hik
hik S hik U

Y w y Z w y
 
   (2.1) 
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where hikw  is the design weight for unit k  of PSU i  in stratum h  and hikZ  is the indicator variable for 

sample inclusion. Using the respondents only, the poststratified estimator of the population total is  

 
=1 =1

ˆ
ˆ = = .

ˆ

hik hik chik hikC C R
chik S

PS c c R
c chik hik chik c

hik S

w r y
Y

Y M M
w r M









 

 (2.2) 

We define the finite population parameter of interest to be the difference between the expected value of 
ˆ
PSY  and the expected value of ˆ ,SSY  which will be 0 if there is no nonresponse bias after poststratification. 

Define  

                                            

= ,

,

R
c chik hik c c

hik U

R
c chik hik hik

hik U

M R p M

Y R y















  

and 

                                                  
=1 =1

= = .
C CR R

c c
c R

c cc c

Y Y
M Y Y

M p
     (2.3) 

Using the relation   = 0,chik hik chik U
R p


  

                                                
=1

=1

= 1

= 1 .

C
hik

hik chik
c hik U c

C R
hik c

chik hik R
c hik U c c

R
y

p

R Y
y

p M

 








 

 

  
   

  

 

 
  

We are interested in testing the hypothesis 0 : = 0H   vs. : 0,AH    or alternatively in obtaining a 

confidence interval for .  If the response propensity in each poststratum c  is uniform with =hik cR p  for 

all units having = 1,chik  then   will be zero. Alternatively, = 0  if there is no variability in the response 

variable hiky  within each poststratum. If either of these conditions holds, poststratification corrects for bias 

from nonresponse. Note that if each of the poststrata has uniform response propensity – that is, the 

poststratification variables completely explain the variability in underlying response propensities – then the 

poststratification will in fact remove bias for every possible y  variable. If the variance of hiky  is 0 within 

each poststratum, poststratification removes bias for y  but it does not necessarily remove bias for other 

variables. 

We estimate   by ˆ ˆ ˆ= ,PS SSY Y   which may be rewritten as  

                                                    
=1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ= = ,
C

R R R R
PS SS c c c c c SS

c c

Y Y Y Y M M T Y
p

       (2.4) 

where = ,R R R
c c cY Y M  ˆ ˆ= ,R R R

c c cy Y M  and  
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    ˆ ˆ= .R R R R
c c c c cT y Y M M    (2.5) 

Theorem 1 gives the variance of ˆ.  Define  

          
=1

= .
C

hik R
Rhik chik hik c hik

c c

R
e y Y y

p


 
  

 
   

We assume the following regularity conditions.   

(A1) The number of poststrata, ,C  is fixed and  0,1 .c cM M    

(A2) There exists a constant K  such that <hiky K  for all   .hik  

(A3)  max =hik hikw O M n  and maxhik hik hiw w  is bounded.  

(A4) >hikR   for all   ,hik  for a fixed > 0.  This guarantees that every unit has a positive response 

propensity that is bounded away from 0.  

(A5) The vector of response indicators  = hikrr  is independent of the vector of sample inclusion 

indicators  = .hikZZ  In addition, hikr  and ljpr  are independent when     ,hi lj  so that the 

response indicators in different PSUs are uncorrelated.  
 

Assumptions (A1) and (A4) ensure that the denominator in (2.3) is nonzero almost surely. Assumption 

(A2) could be replaced by weaker Liapunov-type conditions such as those in Theorem 1.3.2 of Fuller (2009) 

or Yung and Rao (2000) if more restrictive assumptions are placed on the covariance structure of the 

response indicators ;hikr  however, in practice it can be assumed that almost any characteristic measured in 

a finite population is bounded. Assumption (A5) is weaker than the assumption used in Kim and Kim (2007) 

that the response indicators are independent across units. With assumption (A5), individuals in the same 

PSU (for example, persons in the same household or same city) may exhibit dependence when choosing 

whether to respond to a survey, but the response indicators of individuals in different PSUs are independent. 
 

Theorem 1. Under conditions (A1) – (A5), the variance of ̂  is  

                                          1 2
ˆ ˆ ˆ= ,V V V     

where 

                               1
=1

ˆ =
C

hik R
hik hik Rhik hik hik chik hik c

hik U hik U c c

r
V V Z w e E V Z w y Y

p
 

 

            
   Z  (2.6) 

and 

                         
 2

2
=1 =1 =1

ˆ ˆ ˆ
ˆ ˆ= 2 Cov , = .

C C C R R R
c c c c c

SS
c c cc c c

T T y Y M
V V Y o M n

p p p


   
    

   
     

The proof is given in the appendix. Usually, only  1
ˆV   would be considered because for most 

applications it has higher order than  2
ˆ .V   Unlike situations typically studied in survey sampling, however, 

the first-order term of the linearization variance can be zero for some situations, and in those cases 
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   2
ˆ ˆ= .V V   If the first-order term is not exactly zero but has order  2 ,o M n  both terms of the variance 

are needed. 

The second term in (2.6) equals 0 if = 1cp  for all poststrata c  (that is, there is full response), or if there 

is no variability among the y  values within poststratum c  for each poststratum with < 1.cp  If the response 

indicators hikr  are all independent, then  

    2

=1 =1

1
= .

C C
hik cR R

hik hik chik hik c hik chik hik c
hik U c hik U cc c

r p
E V Z w y Y w y Y

p p
 

 

  
  

  
   Z   

Under the hypothesized uniform response propensity mechanism that =hik cR p  for all population units in 

poststratum ,c  the first term in (2.6) is  

  
=1 =1

ˆ= = .
C C

R R
hik hik Rhik hik hik chik c c c

hik U hik U c c

V Z w e V Z w Y V M Y
 

            
      

If response propensities are uniform, this term equals zero if the population mean of R
cY  is the same for all 

poststrata and the estimated poststratum sizes sum to .M  

If    2
1

ˆn M V   converges to a positive constant, a linearization variance estimator for  ˆV   is  

                                                      2

=1

ˆˆ =
1

h

H
h

L hi h
h i Sh

n
V b b

n





   (2.7) 

where  

                       
=1

=
ˆ

hi

C
c R

hi hik hik chik hik c hikR
k S c c

M
b w r y y y

M




 
  

 
    

and  

                                                         
1

= .
h

h hi
i Sh

b b
n 
   

 

Theorem 2. Suppose conditions (A1) – (A5) hold and that    2
1

ˆn M V   converges to a positive constant. 

Then      2
1

ˆ ˆˆ 0Ln M V V      in probability.  

 

Theorem 2 is proven in the Appendix. 

 
2.2  Higher-order terms of the variance 
 

When    2
1

ˆ = ,V o M n  the higher-order terms of the variance are needed. Theorem 3 gives these 

higher-order terms for the special case of simple random sampling. For simple random sampling, each unit 

is denoted by the subscript i  instead of .hik  
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Theorem 3. Suppose conditions (A1) – (A5) are met, and that a simple random sample of n  units is selected 

from the population of M  units, where 0.n M   Let  ˆ = 1NR
c i ci i ii S

Y w y r


  be the estimated total 

for the nonrespondents in poststratum .c  Assume that R
cy  is independent of ˆ R

cM  and ˆ ,NR
cY  and that all ir  

are independent and are independent of .iZ  Then  

      2 2
2 2

=1

2 1ˆ ˆ= .
C

c R R R R
c c c c

c c

p
V V y Y V M M o M n

p



       

 

We can estimate  2
ˆV   in a simple random sample by  

 
 2

2
=1

ˆ ˆ ˆ2 1
,

ˆ

C
c c c c c c

R
c c c

p s M p M M p

p n n

 
   

where ˆ cp  is the empirical response rate in poststratum ,c  R
cn  is the number of respondents in poststratum 

,c  and 2
cs  is the sample variance of y  for the respondents in poststratum .c  

In practice, the estimated first-order term of the variance using (2.7) will in general be nonzero even 

when  1
ˆ = 0.V   Thus, the estimated first-order term cannot be used to diagnose whether the higher-order 

terms are needed. However, the variance expression in (2.6) implies that  1
ˆV   is sufficiently large for the 

first-order approximation to be valid when all poststrata have response rates bounded away from one and 

non-negligible within-poststratum variance. 

 
2.3  Jackknife 
 

The jackknife estimator of the variance is defined as follows:  

     2

=1

1
ˆ ˆ ˆˆ = ,

g

H
g gj

J
g j Sg

n
V

n
  




   (2.8) 

where  

     

     

 

 

 

   

=1

ˆ ˆ ˆ= ,

ˆ = ,

ˆ = ,

gj gjgj
PS SS

gj
hik hik chik hikC

gj hik S
PS c gj

c hik hik chik
hik S

gj gj
SS hik hik

hik S

Y Y

w r y
Y M

w r

Y w y















 



  

and the jackknife weights are:  

           

   0 if =

= if = , .
1

if

gj h
hik hik

h

hik

hi gj

n
w w h g i j

n

w h g



 


 

 (2.9) 
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If    2
1

ˆn M V   converges to a positive constant and assumptions (A1) – (A5) hold, then    1
ˆ ˆˆ

JV V   

converges to 1 in probability. This follows by standard jackknife arguments (Theorem 6.1 of Shao and Tu 

1995) because the population parameter is a continuously differentiable function of population totals. Under 

the conditions of Theorem 2, either  ˆ ˆˆ
LV   or  ˆ ˆˆ

JV   may be used as a test statistic. Each 

approximately follows a standard normal distribution when the null hypothesis 0 : = 0H   is true. 
 

2.4  Remarks and extensions 
 

In this section we derived the linearization variance estimator for comparing the estimated population 

total of a quantity known for everyone in the selected sample with the poststratified estimate calculated 

using the respondents only. Theorems 1 and 2 also give the variance and variance estimator for comparing 

the estimator calculated using the selected sample with that from the base-weighted respondents. In that 

case, ˆ
PSY  reduces to an estimator with one poststratum,  ˆ ˆ ˆ= ,R R

PSY M M Y  where 
 

ˆ = .R
hik hikhik S

M w r
  

What happens if y  is one of the poststratification variables? In the framework used in this section, the 

population counts for the poststratification variables are obtained from the sampling frame or an external 

source. If y  is a linear combination of poststratification class indicators, then ˆ
PSY  is the same for all possible 

samples and thus has zero variance. Then    ˆ ˆ= ,SSV V Y  which is the first-order term of the variance in 

Theorem 1. If y  is also a stratification variable in the design, then  ˆV   will be zero. If y  is not a 

stratification variable, then typically ŜSY  will vary from sample to sample and will have variance of order 

 2O M n  so that the test of nonresponse bias can be performed. We would expect the rejection rate for the 

test to be the significance level   in this case. 

The parameter   in (2.3) was defined as the difference between the poststratified population total, 

calculated using the population response propensities under the poststratification scheme adopted, and the 

unadjusted population total. In (2.4), the unadjusted population total Y  was estimated by the Horvitz-

Thompson estimator. The parameter   could alternatively be estimated by  

 2
=1

ˆ
ˆ ˆ= ,

ˆ

C
c

PS c
c c

Y
Y M

M
    

in which a poststratified estimator is used instead of ˆ .SSY  The variance of 2̂  is expected to be less than the 

variance of ̂  under the poststratification assumptions, resulting in a more powerful test. However, when 

y  is a linear combination of the poststratum indicators, the statistic 2̂  cannot be used to test 0 : = 0H   

because  2
ˆ = 0.V   A similar problem can occur when y  is highly correlated with the poststratification 

variables. The estimator ˆ,  by contrast, typically has positive variance even when y  is one of the 

poststratification variables. 

Sometimes poststratification is performed using less-than-perfect poststratification totals – for example, 

the totals may come from a large survey such as the American Community Survey which has its own 

sampling and nonsampling errors, or they may be from a census of a slightly different population. In some 

cases, poststratification variables such as race or ethnicity may be measured differently in the survey than 

in the source of the external population totals. Using ̂  rather than 2̂  may detect differences that might be 

caused by a flawed poststratification. 
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If desired, the tests may be performed using means rather than totals. In this case, the population 

parameter is  

                                                                  
=1

=
C R

c c
M R

c c

M Y
Y

M M
    

where = ,Y Y M  and may be estimated by  

                                                                  
=1

ˆ ˆ
ˆ = .

ˆ

C R
c c SS

M R
c hikc

hik S

M Y Y

M wM




 
 (2.10) 

 
3  Propensity weighting 
 

An alternative to poststratification is to use inverse propensity weighting of the respondents (see, for 

example, Folsom 1991; Kim and Kim 2007). 

In this framework, the true response propensity of unit  hik  is hikR  and a model is used to predict the 

propensity from characteristics known for everyone in the selected sample. Logistic regression is often used 

to estimate propensities. Suppose that the -p vector hikx  is known for each unit in .S  The modeled response 

propensity, if hikx  and hikR  were known for each unit in the population, is  

   1

= 1 exp ,M
hik hikR


   x β   

where β  is the solution to the expected population score equations  

   = 0.M
hik hik hik

hik U

R R


 x   

The model removes the bias for the estimated population total of y  if  

 = hik
hik hikM

hik U hik

y
R y

R




 
 

 
  (3.1) 

equals 0. If = ,M
hik hikR R  that is, the response propensity model is correctly specified, then the weighting 

adjustments remove the bias for every possible response variable .y  The population parameter   is 

estimated by  

  ˆ ˆ= 1 exp ,hik hik hik hik hik
hik S

w r y y


         x β   

where β̂  is the solution to the pseudolikelihood score equations  

   1
ˆ1 exp = 0.hik hik hik hik

hik S

w r




        x β x   

Unlike the poststratification situation, the population parameter   in (3.1) is not an explicit function of 

population totals. Similarly to Kim and Kim (2007), we can obtain the linearization variance and a 

linearization variance estimator of ̂  by using the estimating equation for  , ,β  as derived in Binder 

(1983):  ˆˆ ,β  is the solution to  
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                                         ˆ , , = , , , 0,0, ,0, = 0,hik hik hik hik
hik S

w y r 


A β r u x β   (3.2) 

where  

                        
 
 

 
 

1

1

2

1 exp, , ,
, , , = = .

, , ,
1 exp

hik hik hik
hik hik hik

hik hik hik

hik hik hik
hik hik hik hik

ry r
y r

u y r
r y y

           
   
         

x β xu x β
u x β

x β
x β

  

The population parameter   solves the population estimating equation  

      , , = , , , 0,0, ,0, = 0.hik hik hik
hik U

y R 


A β R u x β    

 

Theorem 4. Let        1 2
ˆ ˆ ˆ, = , , , = , .hik hik hik hikhik S

w y r U


  
 U β u x β U β β  Suppose conditions (A2) – 

(A5) are met and there exists a value B  such that , <hik j Bx  for all units  hik  and components .j  Then 

     2ˆ ˆ= ,LV V o M n    where  

          1 1 2 2
ˆ ˆ ˆ ˆ ˆ= 2 , ,LV V Cov U V U              T QXC U β CX QT T QXC U β β β  (3.3) 

X  is the M p  matrix with rows ,hik
x  T  is the -M vector with elements ,hik hikR y Q  is the M M  

diagonal matrix with entries  exp ,hik
x β  and    12= .

 C X I Q QX  
 

A linearization variance estimator for ̂  may be obtained by substituting estimators for the population 

quantities in (3.3) to obtain  

 
   

      
1

1 2 2

ˆˆ ˆ ˆ ˆˆ ˆ ˆ, =

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 Cov , ,

L S S S S S S S S

S S S S

V V

U V U

    

        

β t W Q X C U β CX Q W t

t W Q X C U β β β
  

where SX  is the m p  matrix with rows hik
x  for the sampled units with m  the size of the selected sample, 

SW  is the m m  diagonal matrix of weights hikw  for sampled units, St  is the -m vector with elements 

hik hikr y  for sampled units, SQ  is the m m  diagonal matrix with entries  ˆexp hik
x β  for values of hikx  in 

the sample, and    1
2ˆ = .S S S S S

 C X W I Q Q X  

The jackknife variance estimator for inverse propensity weighting is defined using the formula in (2.8) 

with jackknife weights in (2.9). For the propensity setting,  

       ˆ ˆ= 1 exp ,gjgj gj
hik hik hik hik hik

hik S

w r y y


         x β   

where  ˆ gjβ  solves  

     1

1 exp = 0.gj
hik hik hik hik

hik S

w r




        x β x   

 

Theorem 5. Assume that the conditions of Theorem 4 hold. If    2 ˆ
Ln M V   converges to a positive 

constant, then      2 ˆ ˆˆ
L Ln M V V     and      2 ˆ ˆˆ

J Ln M V V     both converge in probability to 0.   
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The proof of Theorem 5 follows by standard arguments in Fuller (2009) and Shao and Tu (1995) and is 

hence omitted. 

The parameter   for examining bias with inverse propensity weighting was defined for population totals. 

As with poststratification, it may be desired to compare means instead of totals, particularly if weight 

trimming is used to truncate large and influential values of the propensity weight  ˆ1 exp .hik
   x β  In this 

case, the parameter to be evaluated is  

 
=

M
hik hik hik hik

hik U hik U
M M

hik hik
hik U

R y R y

R R M
  




 


  

with estimator  

     
 

 
ˆ1 exp

ˆ = .
ˆ1 exp

hik hik hik hik hik hik
hik S hik S

M
hikhik hik hik

hik Shik S

r w y w y

wr w
  



   


   

 


x β

x β
  

Special adjustments are needed to account for weight trimming with the linearization variance estimator; in 

general, we recommend using the jackknife or another replication method for finding the variance of ̂  

or ˆ .M  
 

4  Simulation results 
  

We examine the performance of the variance estimators in two simulation studies. The first study 

generates finite populations with response indicators hikr  and then draws simple random samples from the 

population. The second simulation uses data from the 2009-2013 5-year American Community Survey 

Public Use Microdata Samples (ACS PUMS) as a population and then draws repeated cluster samples from 

this population under different nonresponse mechanisms. 

For the simulation involving simple random sampling, we generated finite populations of 1,000,000 

units. To study the poststratification estimator we used = 6C  poststrata to generate nonresponse. The 

experimental factors were:   

 sample size, :n  300 or 1,000.  

 population proportion  cM M  in each poststratum: (P1) (1/6, 1/6, 1/6, 1/6, 1/6, 1/6), (P2) (1/21, 

2/21, 3/21, 4/21, 5/21, 6/21), and (P3) (6/21, 5/21, 4/21, 3/21, 2/21, 1/21).  

 response rates in poststrata: (R1) (0.2, 0.3, 0.5, 0.6, 0.8, 0.9), (R2) (0.3, 0.7, 0.3, 0.7, 0.3, 0.7), 

and (R3) (1, 1, 1, 1, 1, 1). Level (R3), with full response, is included to explore the accuracy of 

the higher-order approximation to the variance when  1
ˆ = 0.V   

 poststratum means: (M1) (0, 0, 0, 0, 0, 0), (M2) (-2, -1, 0, 1, 2, 3) and (M3) (0, 1, 0, 1, 0, 1).  

 number of poststrata used in nonresponse adjustment: 1, 3 (collapse adjacent pairs of poststrata), 

or 6. Only the settings with 6 poststrata are guaranteed to correct for the nonresponse bias.  
 

Within each poststratum, population values iy  were generated from a normal distribution with the 

specified poststratum mean and variance 1. The response indicators ir  were generated as independent 
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Bernoulli random variables with mean .iR  The simple random sampling simulations were done in version 

3.2.2 of R (R Core Team 2015), and 2,000 iterations were performed for each of the 162 simulation settings, 

which results in a standard error less than 0.005 for the Monte Carlo estimate of the rejection proportion 

when the null hypothesis of = 0  is true. Some of the generated samples had fewer than two respondents 

in one or more poststrata, which would result in some jackknife resamples having no respondents in those 

poststrata. For such samples, the two poststrata with the smallest number of respondents were combined 

iteratively until all poststrata had at least two respondents. 

For each simulation setting, the Monte Carlo (MC) variance of ˆ,  ˆˆ ,MCV   was calculated as the sample 

variance of b̂  for = 1, , 2,000.b   The linearization and jackknife variance estimates were calculated for 

each simulated sample, and the means of those estimates over the 2,000 samples are denoted as  ˆˆ
LV   and 

 ˆˆ ,JV   respectively. 

Figures 4.1 and 4.2 display results for the simulation settings in which  1
ˆ > 0.V   Figure 4.1 displays 

histograms of the ratios of the mean linearization and jackknife variance estimates to  ˆˆ .MCV   The 

scatterplot in Figure 4.2 displays the percentage of the 2,000 iterations in which the null hypothesis 

0 : = 0H   is rejected at the 5% significance level. Most of the variance estimates are close to the MC 

variance and the rejection rate for 0 : = 0H   is approximately 5% when = 0,  with higher power for 

larger values of .  Four of the simulation runs with = 0,  however, have linearization and jackknife 

variances that are approximately twice the MC variance, and rejection rates that are between 0 and 1%. 

These results are from the simulations with poststratum means (M3), response rates (R3), population 

proportions (P2) or (P3), and three collapsed poststrata. Although the population means for the collapsed 

poststrata differ, they do not differ greatly and a sample size of 1,000 is too small for the first-order 

asymptotic approximation to be accurate. For these settings, a sample size of approximately 15,000 was 

needed to reduce the variance ratios    ˆ ˆˆ ˆ
L MCV V   and    ˆ ˆˆ ˆ

J MCV V   to 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Ratios of (a)  ˆˆ
LV   and (b)  ˆˆ

JV   to  ˆˆ ,MCV   for the simple random sample poststratification 

simulation settings in which  
1

ˆ > 0.V   The blue circles represent simulations with = 1,000n  and 

the red Xs represent simulations with = 300.n  
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Figure 4.2  Empirical power for tests using linearization and jackknife variance, for the simple random sample 

poststratification simulation settings in which  
1

ˆ > 0.V   The blue circles represent simulations 

with = 1,000n  and the red Xs represent simulations with = 300.n  
 

Figure 4.3 shows the behavior of  ˆˆ ,LV    ˆˆ ,JV   and  2
ˆV̂   when the first-order term of the variance 

is  1
ˆ = 0V   but  2

ˆ > 0.V   For all of those simulations, the true value of   was 0 and the second-order 

term  2
ˆV̂   was calculated using the SRS approximation in Theorem 3. Even though the true first-order 

variance  1
ˆV   is zero for these settings, the estimated first-order variances from linearization and jackknife 

are nonzero. For the simulations with poststratum means (M1) and response rates (R3), for example, all 

poststrata have the same population mean. The sample means for the poststrata differ, however, and this 

causes the linearization and jackknife variance estimators to be positive and, on average, about twice as 

large as the MC variance. The same thing happens with poststratum means (M3), population proportions 

(P1), and response rates (R3) when three poststrata are used: the three collapsed poststrata each have 

population mean 1/2 but the sample means vary. 

 

 

 

 

 

 

 

 

 

Figure 4.3  Ratios of  ˆˆ
LV   (squares),  ˆˆ

JV   (plus signs), and  
2

ˆV̂   (triangles) to  ˆˆ ,MCV   plotted against 
 ˆˆln ,MCV   for the simple random sample poststratification simulation settings in which 

 
1

ˆ = 0.V   For all of these settings, = 0.  The blue symbols (with log MC variance   16) represent 

simulations with = 1,000n  and the red symbols (with log MC variance   16) represent simulations 

with = 300.n  
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Only simulation settings with response rates (R3) required the use of higher-order terms or large sample 

sizes for the linearization and jackknife variance estimators to be accurate. It would be easy to identify these 

situations in practice from the absence of nonresponse. 

To study the properties of the estimators in Section 3, we used a subset of the populations generated for 

the poststratification simulation as well as populations generated with continuous covariate ,x  giving 

factors:   

 Sample size, :n  300 or 1,000.  

 Population values and nonresponse generation.   

1. Nonresponse is generated in 6 poststrata with population proportions (P1) or (P2), and 

response rates (R1) or (R2). The variable of interest y  is generated with poststratum means 

(M1) and (M2) plus a  0,1N  error term.  

2. Covariate x  is generated from a  0,1N  distribution. Then y  is generated as (Y1) 

 0 0,1N  (independent of ),x  (Y2)  0,1 ,x N  or (Y3)  2 0,1 .x N  The response 

propensities are generated as (R1P) = 0.8R  for all units, (R2P) logit     = 1 1 exp ,R x   

and (R3P) logit     2= 1 1 exp 3 .R x   
 

 Response propensity model used.   

1. For poststratified populations, treat x  as a continuous variable with values 1–6.  

2. For populations with generated covariate ,x  use linear logistic regression with covariate .x  

This model is correctly specified for response-generating mechanisms (R1P) and (R2P) but 

incorrectly specified for mechanism (R3P).  

 
To reduce the instability of the estimators, estimated response propensities less than 0.05 were replaced 

by 0.05, corresponding to trimming weight adjustments larger than 20. Figures 4.4 and 4.5 display the 

variance ratios and empirical power for the propensity model simulations. All settings in this simulation had 

 1
ˆ > 0.V   As in the poststratification simulation, the linearization and jackknife variance estimators both 

perform well in general. There are a few settings, however, in which the linearization variance is 

substantially larger than the jackknife. This occurs because of the weight trimming: the jackknife 

automatically accounts for the effect of weight trimming on the variance because the jackknife replicates 

also trim the weights. The linearization variance used in this simulation was from Theorem 5, and the 

formula would need to be modified to include the effects of trimming. We also ran simulations using the 

jackknife in which the mean was estimated instead of the population total, and the jackknife performed well 

for that parameter as well. 

The second simulation study used a population of 6,019,599 household-level records from the ACS 

PUMS studied in Lohr, Hsu and Montaquila (2015). There are 3,344 PSUs in the population defined by the 

public use microdata areas. Eight poststrata were formed based on the cross-classification of households by 

tenure (rent or own), presence of children in the household (yes or no), and number of income earners (0-1 

or 2+). The primary outcome variable y  was household income. Additionally, a less skewed outcome 

variable  log y  was studied, where  log y  was set to 0 if < 1.y  
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A 2 2 3   factorial design was used for this study with factors   

 overall response rate: 50% or 80%.  

 number of PSUs for each sample: 25 or 100.  

 nonresponse generating mechanism: (N1) missing completely at random (MCAR), with response 

propensity for all records equal to the response rate for all households; (N2) missing at random 

(MAR), where a linear logistic model with main effect terms for tenure, presence of children, and 

number of income earners generates the response propensities; and (N3) missing not at random 

(MNAR), where a linear logistic model with main effect terms for tenure, presence of children, 

and household income generates the response propensities.  
 

 

 

 

 

 

 

 

 

 

 

Figure 4.4  Ratios of (a)  ˆˆ
LV   and (b)  ˆˆ

JV   to  ˆˆ ,MCV   for the propensity model simulation. The blue circles 

represent simulations with = 1,000n  and the red Xs represent simulations with = 300.n  
 

 

 

 

 

 

 

 

 

 

 

Figure 4.5  Empirical power for tests in the propensity model simulation using linearization and jackknife 

variance. The blue circles represent simulations with = 1,000n  and the red Xs represent 

simulations with = 300.n  
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For the first two nonresponse generating mechanisms, = 0.  For the first mechanism, there is no 

nonresponse bias. Poststratification corrects for the bias in the second mechanism because =hik cR p  for 

units in poststratum .c  Poststratification does not correct for the bias in the third mechanism because the 

nonresponse depends on the y  variable, household income. 

For each simulation setting, response indicators were generated independently for the population units 

using the calculated response propensities. One thousand samples were drawn for each setting, in which 

PSUs were selected with probability proportional to size and a simple random sample of 100 households 

was selected from each sampled PSU. The standard error for the rejection proportion when = 0  is less 

than 0.007. 

Calculations for the ACS simulation were done in SAS® software (SAS Institute, Inc. 2011). We first 

calculated the weights and jackknife weights for the selected sample, and then calculated the poststratified 

and jackknife poststratified weights for the respondents. The two sets of jackknife weights used the same 

replication structure, so that replicate weight k  for the respondents deleted the same PSU as replicate weight 

k  for the selected sample. To simplify computation of ˆ
M  in (2.10), we concatenated the selected sample 

and respondents, with their respective weights, into one data set and set = 1iu  for records in the respondent 

data set and = 0iu  for records in the selected sample data set. The linear model 0 1=i iy u   was fit to 

the concatenated data using the SURVEYREG procedure, and 1
ˆ ˆ=M   from the regression model. 

Table 4.1 gives the results from the simulation. For all but one of the simulation settings, the mean of 

the jackknife variance estimates is larger than the Monte Carlo variance of ˆ ,M  but the bias of the jackknife 

variance is reduced when more PSUs are sampled or the response rate is higher. The outcome variable ,y  

household income, is highly skewed, and the rejection rate when = 0M  is closer to the nominal   of 0.05 

when the log-transformed variable is used. 

 
Table 4.1 
Simulation results from ACS population   
 

Nonresponse 
Mechanism 

Response 
Rate (%) 

Number  
of PSUs  

Outcome variable y  Outcome variable  log y  

M  % Reject 
 
 
ˆˆ

ˆˆ
J M

MC M

V

V




 M  % Reject 

 
 
ˆˆ

ˆˆ
J M

MC M

V

V




 

MCAR 50  25   0   3.3   1.21   0   4.5   1.20  
MCAR 50  100   0   3.0   1.09   0   4.4   1.08  
MCAR 80  25   0   3.8   1.14   0   4.0   1.19  
MCAR 80  100   0   3.9   1.07   0   5.2   1.05  
MAR 50  25   0   4.5   1.16   0   4.2   1.11  
MAR 50  100   0   4.9   1.04   0   4.4   1.05  
MAR 80  25   0   3.5   1.16   0   4.7   1.20  
MAR 80  100   0   3.5   1.12   0   4.6   1.11  

NMAR 50  25   8,882   70.8   1.41   0.118   6.3   1.60  
NMAR 50  100   8,882   99.5   1.11   0.118   37.7   1.11  
NMAR 80  25   3,706   45.6   1.18   0.047   14.5   1.20  
NMAR 80  100   3,706   99.4   1.09   0.047   61.0   0.99  
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5  Discussion 
 

In this paper, we considered tests for nonresponse bias after poststratification or inverse propensity 

weighting has been used. The arguments in the theorems could be extended to similar methods that are used 

to adjust for nonresponse bias such as raking, which iteratively poststratifies to marginal population totals, 

or calibration, which adjusts the weights so that estimated population totals agree with control totals for a 

set of auxiliary variables. Haziza and Lesage (2016) argued that using a two-step procedure of propensity 

weighting followed by calibration provides more protection against nonresponse bias than using calibration 

alone in a single step, because single-step calibration implies a model relating the response propensities and 

the calibration variables and that model may be misspecified. The tests proposed in this paper could be 

extended to situations in which both propensity weighting and poststratification are used, or could be used 

separately to assess the bias removed in each step of a two-step process. 

We employed the jackknife for the replication variance estimation. However, all of the estimators are 

smooth functions of population totals, so other replication variance estimators such as balanced repeated 

replication or bootstrap could be used as well. 

A challenge for evaluating nonresponse bias is the limited amount of information available for the 

selected sample. For some surveys all available auxiliary information is used or considered for forming 

poststrata, raking classes, or inverse propensity weights. The poststratified estimator for characteristics used 

in the poststratification has no variance or bias, so testing these or closely related characteristics will not 

uncover nonresponse bias in other survey variables. Auxiliary variables that are not used for nonresponse 

adjustments are often omitted only because they were not selected in model selection method used to form 

the poststrata or select variables for the logistic regression, and that typically occurs because they have low 

explanatory power for predicting the response indicator after the other variables are included in the model. 

For surveys with less frame information, it may be possible to obtain auxiliary information from other 

sources, such as administrative records associated with the respondents’ addresses or paradata. It is 

important to make sure that the variables used to test nonresponse bias are recorded consistently for 

respondents and nonrespondents. If, for example, y  is the interviewer’s curbside assessment about whether 

children are present in the household, that initial assessment should be used for both respondents and 

nonrespondents: the assessment used in the nonresponse bias analysis should not be updated after the 

interviewer ascertains the actual number of children in a responding household. 

After testing available variables for nonresponse bias, we still do not know whether the adjustments have 

removed the bias for outcome variables that are available only for the respondents. Abraham, Helms and 

Presser (2009) and Kohut, Keeter, Doherty, Dimock and Christian (2012) found that estimates of 

volunteering and civic participation are higher from surveys with low response rates than from the Current 

Population Survey, indicating that weighting adjustments do not remove bias for civic engagement variables 

although they appear to remove bias for demographic variables and home ownership. But testing a wide 

range of auxiliary variables for residual bias may give more confidence in the results of a survey on the 

untested variables, or may indicate concerns about inferences from the survey for variables of interest. We 

recommend that survey designers plan the survey with nonresponse bias assessment in mind, and collect 
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additional information for the selected sample whenever possible. In general, the more information that can 

be collected about the selected sample, the better. 

The comparison of estimates using different sets of weights may be of special interest when studying 

responsive or adaptive design strategies such as those described in Groves and Heeringa (2006) and 

summarized in Tourangeau, Brick, Lohr and Li (2016). In these, later phases of the design are modified 

using information gleaned in the early returns. One responsive design strategy may be to estimate response 

rates after the first phase of the survey, and then to allocate resources in the second phase to equalize rates 

across subgroups of interest. In an experimental comparison of different responsive design strategies, it may 

be of interest to evaluate the estimated nonresponse bias from the strategies. Riddles, Marker, Rizzo, Wiley 

and Zukerberg (2015) compared nonresponse-weighted estimates from different data cutoff points in the 

U.S. Schools and Staffing Survey, to see if estimates changed with earlier truncation of data collection. 

The results in Theorems 1 through 5 are expressed for probability samples. There is increased interest in 

using nonprobability samples to study populations (Baker, Brick, Bates, Battaglia, Couper, Dever, Gile and 

Tourangeau 2013). Proponents of nonprobability samples argue that with response rates sometimes below 

10%, an inexpensive large nonprobability sample can have smaller mean squared error than a small 

probability sample. The same methods of poststratification and inverse propensity weighting are typically 

used with nonprobability samples. The tests proposed in this paper can be adapted for use with 

nonprobability samples, provided that auxiliary information is known for a collection of individuals that can 

serve as a stand-in for a sampling frame. For a web survey, it might be possible to compare characteristics 

of persons visiting the web page with those of persons completing the survey. Further research is needed in 

this area. 
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Appendix 
 

The following lemma shows that the additional variability due to the stochastic response mechanism is 

 2 .O M n  

Lemma 1. Suppose assumptions (A3) and (A5) are met, and that hikq Q  for all   .hik U  Then  

  2= .hik hik hik hik
hik U

E V Z w q r O M n


  
    
 Z   

 

 



Survey Methodology, December 2016 213 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Proof. By assumption (A5),  

 

    
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=1 =1 =1 =1
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hik hik hik hik hik hip hik hip hik hip hik hip
hik U h i k p
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h i k p

N MH

hi hi hik
h i k
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Q E Z Z w w

Q P hi S P k S p S w w
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  

 
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 





Z

 

=1

2= .

hiM

hip
p

O M n



  

The last line is implied by (A3). 
 

Proof of Theorem 1. From (2.4),  

                                                 1
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The leading term simplifies to  
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Lemma 1 and Assumption (A4), which guarantees that 1 cp  is bounded, imply that the second term is 

 2 .O M n  

To show that    2
2

ˆ = ,V o M n  note that by (A4) and the Cauchy-Schwarz inequality,  

        
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ˆ 1 ˆ ˆ .
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Assumption (A2) implies (Fuller 2009, Theorem 1.3.2) that 

 ,
ˆ 1

R R
c c

cR R
c c

y Y
n N

M M

 
 

 
0 Σ  

as ,n    where cΣ  is a non-negative definite matrix. Consequently,  

         
2

2ˆ [1,1] 2, 2 2 1, 2 ;R R R R
c c c c c c cR

c

n
V y Y M M

M


      

 
Σ Σ Σ   

applying the Cauchy-Schwarz inequality to the covariance term implies that    2
2

ˆ = .V o M n  
 

Proof of Theorem 2. We show that  
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so that  ˆˆ
LV   is an approximately unbiased estimator of  1

ˆ .V   The consistency follows by (A2), which 

implies asymptotic normality, and the law of large numbers. 
 

Proof of Theorem 3. For ,c d  

          2 2ˆ ˆCov , =R R R R R R R R
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c c d dE y Y y Y o n   for simple random sampling (equation (4.26) of Lohr 2010). 

Consequently,  
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Combining the terms,  
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We can estimate cp  by the empirical response rate in poststratum ,c  R R
c cV y Y  by 2 ,R

c cs n  and, under 

simple random sampling,  ˆ = .R R
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< 1 2cp  for some poststrata; however, when < 1 2cp  and   > 0,R
cV y  then the first-order term of the 

variance,  1
ˆ ,V   is positive and the second-order term has lower order. 

 

Proof of Theorem 4. Condition (A4) guarantees that, asymptotically, complete separation will not occur 

and M
hikR  is bounded away from 0. 

The derivative of Â  with respect to the parameters is  
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Using successive conditioning and the independence of r  and ,Z  the expected value of  ˆ , ,D r β  is  
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Also,    2ˆCov vec , , = O M n  D r β  because  
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The first term is  2O M n  by standard arguments and the second term is  2O M n  by Lemma 1, noting 

that the boundedness of hikR  and hikx  also bound  exp .hik
x β  Consequently,  
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The result in (3.3) follows because  
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