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Comparison of unit level and area level small area estimators 

Michael A. Hidiroglou and Yong You1 

Abstract 

In this paper, we compare the EBLUP and pseudo-EBLUP estimators for small area estimation under the nested 
error regression model and three area level model-based estimators using the Fay-Herriot model. We conduct a 
design-based simulation study to compare the model-based estimators for unit level and area level models under 
informative and non-informative sampling. In particular, we are interested in the confidence interval coverage 
rate of the unit level and area level estimators. We also compare the estimators if the model has been misspecified. 
Our simulation results show that estimators based on the unit level model perform better than those based on the 
area level. The pseudo-EBLUP estimator is the best among unit level and area level estimators. 

 
Key Words: Confidence interval; Design consistency; Fay-Herriot model; Informative sampling; Model misspecification; 

Nested error regression model; Relative root mean squared error (RRMSE); Survey weight. 

 
 

1  Introduction 
 

Model-based small area estimators have been widely used in practice to provide reliable indirect 

estimates for small areas in recent years. The model-based estimators are based on explicit models that 

provide a link to related small areas through supplementary data such as census and administrative records. 

Small area models can be classified into two broad types: (i) Unit level models that relate the unit values of 

the study variable to unit-specific auxiliary variables and (ii) Area level models that relate direct estimators 

of the study variable of the small area to the corresponding area-specific auxiliary variables. In general, area 

level models are used to improve the direct estimators if unit level data are not available. The sampling set-

up is as in Rao (2003). That is, a universe U  of size N  is split into m  non-overlapping small areas iU  of 

size ,iN  where 1, , .i m   Sampling is carried out in each small area using a probabilistic mechanism, 

resulting in samples is  of size .in  The selection probabilities associated with each element 1, , ij n   

selected in sample is  is denoted as .ijp  The resulting design weights are given by 1 1.ij i ijw n p   In practice, 

these weights can be adjusted to account for non-response and/or auxiliary information. The resulting 

weights are known as the survey weights. In this paper, we assume full response to the survey, and no 

adjustment to the auxiliary data. Direct area level estimates are obtained for each area using the survey 

weights and unit observations from the area. The survey design can be incorporated into small area models 

in different ways. In the area level case, direct design-based estimators are modeled directly and the survey 

variance of the associated direct estimator is introduced into the model via the design-based errors. In the 

case of the unit level, the observations can be weighted using the survey weight. A number of factors affect 

the success of using these estimators. Two important factors are whether the assumed model is correct and 

whether the variable of interest is correlated with the selection probabilities associated with the sampling 

process, that is, informativeness of the sampling process. In this paper, we compare, via a simulation study, 

the impact of model misspecification and the informativeness of the sampling design for two basic small 

area procedures based on unit and area levels in terms of bias, estimated mean squared error and confidence 
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interval coverage rates. A sampling design is informative if the selection probabilities ijp  are related to the 

variable of interest ijy  even after conditioning on the covariates .ijx  In such cases, we have informative 

sampling in the sense that the population model no longer holds for the sample. Pfeffermann and Sverchkov 

(2007) accounted for this possibility by adjusting the small area procedures. Verret, Rao and Hidiroglou 

(2015) simplified the procedure. In this paper, we do not adjust the small area procedures for 

informativeness, but study their impact. 

The paper is structured as follows. The point estimators and associated mean squared error estimators 

for the unit level and area models are described in Section 2 and in Section 3 respectively. The description 

of the simulation and results are given in Section 4. This simulation computes the point and associated mean 

squared errors for a PPSWR (probability proportional to size with replacement) sampling scheme by varying 

the following two factors: (a) the assumed model is correct or incorrect; and (b) design informativeness 

varies from being non-significant to being very significant. In Section 5, we give an example using data 

from Battese, Harter and Fuller (1988) that compares the unit level and area level estimates. Finally, 

conclusions resulting from this work are presented in Section 6. 

 
2  Unit level model 
 

A basic unit level model for small area estimation is the nested error regression model (Battese et al. 

1988) given by ,    1, , , 1, , ,ij ij i ij iy v e j N i m    x    where ijy  is the variable of interest for the 
thj  population unit in the thi  small area,  1 , ,ij ij ijpx x x   is a 1p   vector of auxiliary variables, with 

1 1,ijx    0 1, , p   β   is a 1p   vector of regression parameters, and iN  is the number of population 

units in the thi  small area. The random effects iv  are assumed to be independent and identically distributed 

 . . .i i d   20, vN   and independent of the unit errors ,ije  which are assumed to be . . .i i d   20, .eN   

Assuming that iN  is large, the parameter of interest is the mean for the thi  area, 1

1
,iN

i i ijj
Y N y


   which 

may be approximated by  

 ,i i iv  X β  (2.1) 

where 
1

iN

i ij ij
N


 X x  is the vector of known population means of the ijx  for the thi  area. We assume 

that samples are drawn independently within each small area according to a specified sampling design. 

Under non-informative sampling, the sample data  ,ij ijy x  are assumed to obey the population model, i.e.,  

 , 1, , , 1, , ,ij ij i ij iy v e j n i m    x β    (2.2) 

where ijw  is the basic design weight associated with unit  , ,i j  and in  is the sample size in the thi  small 

area. 
 

2.1  EBLUP estimation 
 

The best linear unbiased prediction (BLUP) estimator of small area mean, ,i i iv  X β  based on the 

nested error regression model (2.2) is given by  
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   ,i i i i i ir y r   X x β   (2.3) 

where 
1

,in

i ij ij
y y n


   

1
,in

i ij ij
n


 x x   2 2 2 ,i v v e ir n     and 

  
1

1 1 2 2

1 1

, ,
m m

i i i i i i e v
i i

y  


 

 

      
  
 β x V x x V β   (2.4) 

with  1 , , ,
ii i inx x x   2 2 ,

i i ii e n v n n   V I 1 1   1 , , ,
ii i iny y y   1, , .i m   Both i  and β  depend on 

the unknown variance parameters 2
e  and 2 .v  The method of fitting constant can be used to estimate 2

e  

and 2 ,v  and the resulting estimators are   12 2

1 1
ˆˆ 1 ,im n

e iji j
n m p 

 
       and  2 2ˆ max ,0 ,v v    

where  2 1 2 2
* 1 1

ˆˆ ,im n

v ij ei j
n u n p 

 
         1 2

* 1
tr ,

m

i i ii
n n n




     X X x x   1 , , ,mx x  X   

1
.

m

ii
n n


   

The residuals  ˆij  are obtained from the ordinary least squares (OLS) regression of ij iy y  on 

 1 1 , ,ij i ijp i p  x x x x  and  ˆiju  are the residuals from the OLS regression of ijy  on  1 , , .ij ijpx x  See 

Rao (2003), page 138 for more details.  

Replacing 2
e  and 2

v  by estimators 2ˆe  and 2ˆv  in equation (2.3), we obtain the EBLUP estimator of 

small area mean i  as  

  EBLUPˆ ˆˆ ,i i i i i ir y r   X x β  (2.5) 

where  2 2 2ˆ ˆ ˆî v v e ir n     and  2 2ˆ ˆ ˆ, .e v β β  The mean squared error (MSE) of the EBLUP estimator 
EBLUP
î  is given by 

        EBLUP 2 2 2 2 2 2
1 2 3

ˆMSE , , , ,i i e v i e v i e vg g g           

see Prasad and Rao (1990). The g  terms are 

                                      
   

       

2 2 2
1

1
2 2 1

2 1

, 1 ,

,

i e v i v

m

i e v i i i i i i i i ii

g r

g r r

  

 





 

   X x x V x X x
  

and 

                                           32 2 2 2 2 1 2 2
3 , , ,i e v i v e i e vg n n h          

where        2 2 4 2 2 2 2 2 4 2ˆ ˆ, 2 cov , .e v e v e v e v v eh V V              The variances and covariance of 2ˆe  and 
2
v  are given by  

                                      
   
       

12 4

12 2 4 2 2 4
* * **

ˆ 2 1

2 1 1 2 ,
e e

v e e v v

V n m p

V n n m p m n p n n

 
    





   

         
  

and  

                                           2 2 1 2
*ˆ ˆcov , 1 ,e v em n V       
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where  2

** tr ,n  Z MZ    ,n
   -1

M I X X X X   
1

diag , , .
mn nZ 1 1  

A second-order unbiased estimator of the MSE (Prasad and Rao 1990) is given by  

        EBLUP 2 2 2 2 2 2
1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆmse , , 2 , .i i e v i e v i e vg g g          (2.6) 

Note that the EBLUP estimator EBLUP
î  given by (2.5) depends on the unit level model (2.2). It is model-

unbiased, but it is not design consistent unless the sample design is simple random sampling. If model (2.2) 

does not hold for the sampled data, then the EBLUP estimator EBLUP
î  may be biased, that is, additional bias 

will be present in the EBLUP estimator due to model misspecification. 

 
2.2  Pseudo-EBLUP estimation 
 

You and Rao (2002) proposed a pseudo-EBLUP estimator of the small area mean i  by combining the 

survey weights and the unit level model (2.2) to achieve design consistency. Let ijw  be the weights 

associated with each unit  , .i j  A direct design-based estimator of the small area mean is given by  

 1

1
1

,

i
i

i

n
n

ij ijj
iw ij ijn

jijj

w y
y w y

w






 





  (2.7) 

where .1

in

ij ij ij ij ij
w w w w w


   and 

1
1.in

ijj
w


   The weighted estimator iwy  is also known as the 

weighted Hájek estimator. By combining the direct estimator (2.7) and the unit level model (2.2), we can 

obtain the following aggregated (survey-weighted) area level model 

 ,    1, , ,iw iw i iwy v e i m   x β   (2.8) 

where 
1

in

iw ij ijj
e w e


    with   0,iwE e     2 2 2

1
,in

iw e ij ij
V e w 


    and 

1
.in

iw ij ijj
w


 x x  Note that the 

regression parameter β  and the variance components 2
e  and 2

v  are unknown in model (2.8). Based on 

model (2.8), assuming that the parameters ,β  2
e  and 2

v  are known, the BLUP estimator of i  is 

    2 2, , ,iw iw iw i iw iw iw e vr y r      X x β β   (2.9) 

where  2 2 2 .iw v v ir      The BLUP estimator iw  depends on ,β  2
e  and 2 .v  To estimate the regression 

parameter, You and Rao (2002) proposed a weighted estimation equation approach, and obtained an 

estimator of β  as follows:  

      
1

2 2

1 1 1 1

, .
i im n m n

w ij ij ij iw iw ij ij iw iw ij w e v
i j i j

w r w r y  


   

         
   
 β x x x x x β    

 2 2,w w e v β β   depends on 2
e  and 2 .v  Replacing 2

e  and 2
v  in wβ  by the fitting of constant estimators 

2ˆe  and 2ˆ ,v   2 2ˆ ˆ ˆ,w w e v β β  is obtained; See Rao (2003, page 149). Replacing ,β  2
e  and 2

v  in (2.9) 

by ˆ ,wβ  2ˆe  and 2ˆ ,v  the pseudo-EBLUP estimator for the small area mean i  is given by 
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  EBLUPˆ ˆ ˆˆ ˆ .P
i iw iw iw i iw iw wr y r    X x β  (2.10) 

As the sample size in  becomes large, estimator EBLUPˆP
i
  becomes design-consistent. It also has a self-

benchmarking property when the weights ijw  are calibrated to agree with the known population total. That 

is, if 
1

,in

ij ij
w N


  EBLUP

1
ˆm P

i ii
N  

  is equal to the direct regression estimator of the overall total,  

  EBLUP

1
ˆ ˆˆ ˆ ,

m P
i i w w wi

N Y 


   X X β   

where 
1 1

ˆ ,im n

w ij iji j
Y w y

 
    and 

1 1
ˆ .im n

w ij iji j
w

 
  X x  For more details, see You and Rao (2002).  

The MSE of EBLUPˆP
i
  is given by  

        EBLUP 2 2 2 2 2 2
1 2 3

ˆMSE , , , ,P
i iw e v iw e v iw e vg g g            

where    2 2 2
1 , 1 ,iw e v iw vg r          2 2

2 , .iw e v i iw iw w i iw iwg X r x X r x       The term w  is  

 

1 1

2

1 1 1 1 1 1

1 1

2

1 1 1 1 1 1 1

 ,

i i i

i i i i

m n m n m n

w ij ij ij ij ij ij e
i j i j i j

m n m n n m n

ij ij ij ij ij ij v
i j i j j i j

z

x





 

     

 

      

             
      

                            

  

    

x z z x z

x z z z z

  

where   ,ij ij ij iw iww r z x x       22 2 4 2 2 2
3 , 1 , .iw e v iw iw e v e vg r r h          2 2,e vh    is the same 

function as in the MSE for the EBLUP estimator given in Section 2.1. A nearly second-order unbiased 

estimator of the MSE can be obtained as  

        EBLUP 2 2 2 2 2 2
1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆmse , , 2 , .P
i iw e v iw e v iw e vg g g           (2.11) 

(See Rao 2003, page 150 and You and Rao 2002, page 435). Note that the MSE estimator (2.11) ignores the 

cross-product terms. Torabi and Rao (2010) obtained the second-order correct MSE estimator including the 

cross-product terms using linearization and bootstrap methods. There are two cross-product terms. The first 

one is simple and has a closed form. Although the linearization method performs well, the explicit form for 

the second cross-product term is very lengthy: furthermore, the formulas based on the linearization 

procedure are not provided in Torabi and Rao (2010). The bootstrap method always underestimates the true 

MSE. A double bootstrap method needs to be applied to get an unbiased estimator of the MSE and is 

computationally extensive. The MSE estimator (2.11) behaves like the linearization estimator of Torabi and 

Rao (2010) when the variation of the survey weights is small. In the case of self-weighting within areas, one 

of the cross-product term is zero and the other term is of order  1 .o m  Hence, the MSE estimator (2.11) is 

nearly unbiased; more discussion is provided in Torabi and Rao (2010). It is for these reasons that these 

cross-product terms were not included in the MSE estimator given by (2.11) in our study.  

Note that under model (2.2) the pseudo-EBLUP estimator EBLUPˆP
i
  is slightly less efficient than the 

EBLUP estimator EBLUPˆ .i  However, the pseudo-EBLUP estimator is design consistent and is therefore 
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more robust to model misspecification. We will compare the performance of the EBLUP and pseudo-

EBLUP estimators through a simulation study.  

 
3  Area level model 
 

The Fay-Herriot model (Fay and Herriot 1979) is a basic area level model widely used in small area 

estimation to improve the direct survey estimates. The Fay-Herriot model has two components, namely, a 

sampling model for the direct survey estimates and a linking model for the small area parameters of interest. 

The sampling model assumes that given the area-specific sample size 1,in   there exists a direct survey 

estimator DIRˆ .i  The direct survey estimator is design unbiased for the small area parameter .i  The 

sampling model is given by  

 DIRˆ ,  1, , ,i i ie i m      (3.1) 

where the ie  is the sampling error associated with the direct estimator DIR
î  and m  is the number of small 

areas. It is customary in practice to assume that the ’sie  are independently normal random variables with 

mean   0iE e   and sampling variance   2var .i ie   The linking model is obtained by assuming that the 

small area parameter of interest i  is related to area level auxiliary variables  1z , , zi i ip z   through the 

following linear regression model  

 ,  1, , ,i i iv i m   z β   (3.2) 

where  1 , , p  β   is a 1p   vector of regression coefficients, and the ’siv  are area-specific random 

effects assumed to be . . .i i d  with   0iE v   and   2var .i vv   The assumption of normality is generally 

also made, even though it is more difficult to justify the assumption. This assumption is needed to obtain 

the MSE estimation. The model variance 2
v  is unknown and needs to be estimated from the data. The area 

level random effect iv  capture the unstructured heterogeneity among areas that is not explained by the 

sampling variances. Combining models (3.1) and (3.2) leads to a linear mixed area level model given by  

 DIRˆ .i i i iv e   z β  (3.3) 

Model (3.3) involves both design-based random errors ie  and model-based random effects .iv  For the 

Fay-Herriot model, the sampling variance 2
i  is assumed to be known in model (3.3). This is a very strong 

assumption. Generally smoothed estimators of the sampling variances are used in the Fay-Herriot model 

and then 2 ’si  are treated as known. However, if direct estimators of sampling variances are used in the 

Fay-Herriot model, an extra term needs to be added to the MSE estimator to account for the extra variation 

(Wang and Fuller 2003).  

Assuming that the model variance 2
v  is known, the best linear unbiased predictor (BLUP) of the small 

area parameter i  can be obtained as 

  DIR
WLS

ˆ 1 ,i i i i i       z β   (3.4) 

where  2 2 2 ,i v v i      and WLSβ  is the weighted least squared (WLS) estimator of β  given by  
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   
1 1

1 12 2 2 2
WLS

1 1 1 1

.
m m m m

i v i i i v i i i i i i i i
i i i i

y y     
 

 

   

                  
       
   β z z z z z z  

There are several methods available to estimate the unknown model variance 2 ;v  You (2010) provides 
a review of these methods. We chose the restricted maximum likelihood (REML) obtained by Cressie (1992) 
to estimate the model variance under the Fay-Herriot model. Using the scoring algorithm, the REML 
estimator 2ˆv  is obtained as  

          12 1 2 2 2 ,   for  1, 2, ,k k k k
v v R v R vI S k            

where    2 1 2 tr ,R vI   PP  and    2 1 2 1 2 tr ,R vS   y PPy P  and   11 1 1 1.
     P V V Z Z V Z Z V  

Using a guessing value for  2 1
v  as the starting value, the algorithm converges very fast. 

Replacing 2
v  in equation (3.4) by the REML estimator 2ˆ ,v  we obtain the EBLUP of the small area 

parameter i  based on the Fay-Herriot model as  

  FH DIR
WLS

ˆ ˆ ˆˆ ˆ1 ,i i i i i       z β  (3.5) 

where  2 2 2ˆ ˆ ˆ .i v v i      The MSE estimator of FH
î  is given by (see Rao 2003) 

  FH
1 2 3

ˆmse 2 ,i i i ig g g     (3.6) 

where 1ig  is the leading term, 2ig  accounts for the variability due to estimation of the regression parameter 

,  and 3ig  is due to the estimation of the model variance. These g  terms are defined as follow: 

      
1

2 22 2
1 2 WLS

1

ˆˆ ˆ ˆ ˆˆ, 1 var 1
m

i i i i i i i v i i i i i i
i

g g     




       
 
z β z z z z z   

and      2 32 2 2 2
3 ˆ ˆvar .i i v i vg    
   

The estimated variance of 2ˆv  is given by      122 2 2

1
ˆ ˆvar 2 ;

m

v v ii
  




   see Datta and Lahiri 

(2000).  

Up to now we have assumed that the sampling variance 2
i  is assumed known in the Fay-Herriot model 

(3.3). This is a very strong assumption. Usually a direct survey estimator, say 2 ,is  of the sampling variance 
2
i  is available. As these estimated variances can be quite variable, they are smoothed using external models 

and generalized variance functions: these smoothed variances are denoted as 2 .is  The smoothed sampling 

variance estimates 2
is  are used in the Fay-Herriot model and treated as known. The associated  FHˆmse i  

is obtained by replacing 2
i  by 2

is  in equation (3.6). Rivest and Vandal (2003) and Wang and Fuller (2003) 

considered the small area estimation using the Fay-Herriot model with the direct sampling variance 

estimates 2
is  under the assumption that the estimators 2

is  are independent of the direct survey estimators iy  

and 2 2 2 ,
ii i i dd s    where 1i id n   and in  is the sample size for the thi  area. When the direct sampling 

variance estimate 2
is  is used in the place of the true sampling variance 2 ,i  an extra term accounts for the 

uncertainty of using 2
is  is needed in the MSE estimator (3.6), and this term, denoted as 4 ,ig  is given by 
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 

4 4

4 32 2

ˆ4
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1 ˆ

v i
i

i v i

s
g

n s






 
  

see Rivest and Vandal (2003) and Wang and Fuller (2003) for details.  

To apply the Fay-Herriot model, we need to obtain area level direct estimates and the corresponding 

sampling variance estimates as input values for the Fay-Herriot model. We consider three area level direct 

estimators; namely, the direct sample mean estimator assuming simple random sampling (SRS), the Horvitz-

Thompson estimator (HT), and the weighted Hájek estimator (HA). The weighted Hájek estimator is also 

used in the pseudo-EBLUP estimator for the unit level model denoted as iwy  in equation (2.7). Table 3.1 

presents these three area level direct estimators and the corresponding sampling variance estimators.  
 

Table 3.1 
Area level direct estimators and sampling variances 
 

 Point estimator Sampling variance estimator 

Direct mean (SRS) 
SRS

1

1ˆ
in

i ij
ji

y
n




        2SRS SRS

1

1ˆ ˆvar
1

in

i ij i
ji i

y
n n

 


 
   

Horvitz-Thompson (HT) estimator 
HT

1 1

1 1ˆ
i in n

ij
i ij ij

j ji i i ij

y
w y

N N n p


 

       

2

HT HT
2

1

1ˆ ˆvar
1

in
ij

i i i
ji i i ij

y
N

N n n p
 




  

  
  

Weighted Hájek (HA) estimator 
1HA

1
1

1ˆ
ˆ

i
i

i

n
n

ij ijj ij
i n

j i ijiijj

w y y

n pNw
 




 





 

 
 

2HA
HA

2
1

ˆ1ˆvar
ˆ 1

in
ij i

i
j iji i i

y

pN n n






 
    

  

 

These area level estimators are used as input values into the Fay-Herriot model. Correspondingly, the 

three area level model-based estimators are denoted as: FH-SRS, FH-HT, and FH-HA. That is, we replace 
DIR

î  by SRSˆ ,i  HT
î  or HA

î  in (3.5) and obtain the corresponding model-based estimator FH-SRSˆ ,i  FH-HT
î  

and FH-HAˆ .i  The SRS direct estimator SRS
î  ignores the sample design and is not design consistent, unless 

the sample design is based on simple random sampling. Note that HT
î  and HA

î  are design consistent 

estimators. It follows that the corresponding model-based estimators FH-HT
î  and FH-HA

î  are design 

consistent as the sample size increases. Furthermore, this means that these estimators are robust to model 

misspecification.  

In the next section, we compare the unit level model with the Fay-Herriot model through a simulation 
study. The statistics used for these comparisons are bias, relative root MSE and confidence intervals of the 
model-based estimators.  

 
4  Simulation study 
 

4.1  Data generation 
 

To compare the unit level and area level small area estimators, we conducted a design-based simulation 

study. Following the simulation setup of You, Rao and Kovacevic (2003), we created two finite populations. 

Each finite population had 30m   areas, and each area consisted of 200iN   population units. Each finite 
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population was generated using the unit level model 0 1 1 .ij ij i ijy x v e      The auxiliary variable 1ijx  

was generated from an exponential distribution with mean 4 and variance 8, and the random components 

were generated from the normal distribution with  2~ 0, ,i vv N    2~ 0, ,ij ee N   where 2 100v   and 
2 225.e   For the first population, the regression fixed effects were set as 0 50,   1 10   for all 30 

areas. For the second population, different fixed effects values were used: 0 50,   1 10   for areas 

1, ,10;m    0 75,   1 15   for areas 11, , 20;m    0 100,   1 20   for areas 21, ,30.m    We 

had three different means for the fixed effects 0 1 1ijx   in the second population, whereas we only had 

one in the first population. PPSWR samples within each area were drawn independently from each 

constructed population. PPSWR sampling was implemented as follows: We first defined a size measure ijz  

for a given unit  , .i j  Using these ijz  values, we computed selection probabilities ij ij ijj
p z z   for 

each unit  ,i j  and used them to select PPSWR samples of equal size .in n  Within each generated 

population, we selected samples of size 10n   and 30.  The basic design weight is given by 1 1 ,ij i ijw n p   

so that the standardized weight is 1 1 .ij ij ijj
w p p    We chose the size measure ijz  as a linear combination 

of the auxiliary variable 1ijx  and data generated from an exponential distribution with mean 4 and variance 

16. The correlation coefficient   between ijy  and the selection probability ijp  within each area varied 

between 0.02 and 0.95. The range of the ’sijp  corresponds to non-informative selection  0.02   to 

strongly informative selection  0.95   of the PPSWR samples. The sampling is non-informative when 

the correlation coefficient between ijy  and the selection probability ijp  is very weak, implying that the 

sample and the population model coincide. If the selection probability ijp  is strongly correlated with the 

observation ,ijy  we have informative sampling, and the population model may no longer holds for the 

sample. For each population, the PPSWR sampling process was repeated 3,000R   times. As in Prasad 

and Rao (1990), the simulation study is design-based as both the populations were generated only once, and 

repeated samples were generated from the same population. 

For unit level modeling, we fitted the nested error regression model to the PPSWR sampling data 

generated from each population. We obtained the corresponding EBLUP and pseudo-EBLUP estimates and 

related MSE estimates using the formulas given in Section 2. We then constructed the confidence interval 

estimates using the squared root of the MSE estimates; details are given in Section 4.2.3. For area level 

modeling, we first obtained the direct area level estimates SRSˆ ,i  HT
î  and HA

î  as well as the corresponding 

sampling variances. We applied the Fay-Herriot model and obtained the model-based estimators FH-SRSˆ ,i  
FH-HT
î  and FH-HAˆ .i  The population mean of the auxiliary variable 1ijx  within each area was used in the Fay-

Herriot model as the auxiliary variable. The 4 ig  was added to the MSE estimator to account for the use of 

unsmoothed sampling variances in the Fay-Herriot model. The corresponding confidence intervals were 

obtained similarly for the unit level EBLUP and pseudo-EBLUP estimators.  

For both unit level and area level model fitting, we used the following two scenarios: Scenario I: correct 

modeling, where the data were generated from the first population and the fitting models were unit level 

model (2.2) and area level model (3.3) with common  0 1, .  β  Scenario II: incorrect modeling, where 

the data were generated from the second population with different means for the fixed effects, and the fitting 

models were the same as in Scenario (I) with common  0 1, .  β  Note that under scenario I the 
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sampling is noninformative when the correct unit level (2.2) is fitted to the sample data to obtain the EBLUP 

estimator: this is true for any correlation coefficient   between ijy  and .ijp  

 

4.2  Results 
 

In this section, we compare a number of statistics for the unit level and area level estimates under both 
scenario I (correct modeling) and scenario II (incorrect modeling).  
 

4.2.1  Comparison within each small area 
 

Figure 4.1 compares the population means with the unit level and area level estimates when 10n   for 

scenario I. The results are based on a strongly informative sampling design where the correlation coefficient 

between ijy  and the selection probability ijp  is 0.88.   The model-based estimates are based on the 

average of 3,000R   simulation runs. It is clear from Figure 4.1 that the unit level estimators EBLUP 

(equation 2.5) and pseudo-EBLUP (equation 2.10) are almost unbiased. The results show that under correct 

modeling, the sampling is noninformative with respect to unit level model (2.2), and the EBLUP is unbiased. 

The area level estimator FH-SRS consistently overestimates the population mean, leading to a large bias. 

The area level estimator FH-HT generally underestimates the population mean and has slightly larger bias 

than the FH-HA estimator. For 30,n   we obtained similar results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1  Comparison of means under scenario I: 10.n   

 

                                Population means and unit level estimates 
                                                 POP-Mean               EBLUP            Pseudo-EBLUP 

                                Population means and area level estimates 
                                        POP-mean         FH-HT         FH-HA          FH-SRS
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Figure 4.2 compares the average root mse  for both unit level and area level estimators for scenario I 

when 10n   and 30.n   The root mse’s  are the squared root of the estimated MSE’s given in Sections 2 

and 3 for the unit level and area level estimators. It is clear that EBLUP and pseudo-EBLUP have much 

smaller root mse’s  than the FH area level estimators for both 10n   and 30.n   As expected (You and 

Rao 2002), EBLUP has the smallest root mse  and pseudo-EBLUP has slightly larger root mse.  For area 

level estimators, FH-SRS has large root mse  and large variations. FH-HT and FH-HA have on average 

about the same root mse,  but FH-HT is more variable than FH-HA as shown in both figures, particularly 

when sample size 10.n   When the sample size 30,n   the variability of the root mse’s  for FH-HT and 

FH-HA are substantially reduced, but it is clear that FH-HA is more stable than FH-HT.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2  Comparison of root mse  under scenario I: 10n   and 30.n   

 
Figure 4.3 compares the unit level and area level estimates with the population means when 10n   

under scenario II. For unit level models, it is clear that EBLUP both underestimates and overestimates the 

population mean when the model is misspecified, whereas pseudo-EBLUP is unbiased (the pseudo-EBLUP 

                                                          Root mse, n = 10  
                             EBLUP              Pseudo-EBLUP                FH-HT              FH-HA               FH-SRS 

                                                          Root mse, n = 30  
                           EBLUP             Pseudo-EBLUP              FH-HT             FH-HA             FH-SRS 
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estimates and population means overlap in Figure 4.3). For area level estimators, FH-SRS consistently 

overestimates the true means, while FH-HT has more underestimation than FH-HA as shown when the 

model is misspecified.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3  Comparison of means under scenario II: incorrect modeling, 10.n   

 
Figure 4.4 compares the root mse’s  of the unit level and area level estimators for both sample size 

10n   and 30n   under incorrect modeling. From Figure 4.4, it can be seen that the pseudo-EBLUP 

estimator has the smallest root mse  under incorrect modeling. EBLUP has very large root mse  when the 

model is misspecified: that is, for areas 1 to 10 and areas 21 to 30, the average root mse  is 10.01, whereas 

for pseudo-EBLUP, the corresponding root mse  is 7.38 when the sample size 10.n   When the sample 

size 30,n   the average root mse  is 8.85 for EBLUP, and only 4.38 for pseudo-EBLUP when the model 

is misspecified. In summary, the results show that the EBLUP estimator leads to biased estimates with large 

root mse  under incorrect modeling.  

                                       Population means and unit level estimates  
                                                  POP-Mean                EBLUP              Pseudo-EBLUP 

                                      Population means and area level estimates  
                                          POP-Mean               FH-HT              FH-HA             FH-SRS 
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Figure 4.4  Comparison of root mse  under scenario II: 10n   and 30.n   

 

4.2.2  Comparison across small areas 
 

To compare the estimators across areas, we considered the average absolute relative bias  ARB  for a 

specified estimator î  of the simulated population mean iY  as  1
ARB ARB ,

m

ii
m


   where  

  
1

ˆ1
ARB ,

rR
i i

i
r i

Y

R Y






   

and  ˆ r
i  is the estimate based on the thr  simulated sample, 3,000, 30.R m   Table 4.1 displays the 

percentage of the average absolute relative bias ARB  of unit level and area level estimators over the 30 

area for scenario I. The results are based on samples selected with sample sizes equal to 10 and 30 

respectively within each area.  

                                                             Root mse, n = 10  
                             EBLUP             Pseudo-EBLUP                FH-HT             FH-HA              FH-SRS 

                                                             Root mse, n = 30  
                            EBLUP              Pseudo-EBLUP                FH-HT              FH-HA              FH-SRS 
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Table 4.1 
Average absolute relative bias ARB%  for scenario I 
 

Type Estimator 10n   30n   
Unit level EBLUP 

Pseudo-EBLUP 
1.71 
2.14 

0.75 
0.86 

Area level FH-SRS 
FH-HT 
FH-HA 

17.51 
6.02 
4.33 

18.64 
3.12 
2.59 

 

For unit level models, it is clear that if we use the correct model, the sample becomes noninformative 
with respect to unit level model (2.2), and both EBLUP and pseudo-EBLUP estimators are unbiased. The 
average absolute relative bias ARB  for EBLUP is 1.71% when the sample size 10n   and 0.75% when 
the sample size 30.n   For pseudo-EBLUP, the ARB  is 2.14% when 10n   and 0.86% when 30,n   
respectively. Pseudo-EBLUP has slightly larger bias than EBLUP. For area level models, FH-SRS severely 
overestimates the means with the average ARB  as large as 17.51% when 10n   and 18.6% when 30.n   
Both area level estimators FH-HT and FH-HA lead to reasonable estimates: (i) The ARB  for FH-HT is 
6.02% when 10n   and 3.12% when 30;n   (ii) The ARB  for FH-HA is 4.33% when 10n   and 2.59% 
when 30.n   The FH-HA estimator performs better than the FH-HT estimator. The absolute relative bias 
for the area level estimators is larger than the one associated with the unit level estimators.  

Table 4.2 displays the ARB  of the various estimators under scenario II. It is clear that pseudo-EBLUP 
has a much smaller ARB  than EBLUP under incorrect modeling. The ARB’s  for EBLUP under incorrect 
modeling are 4.31%  10n   and 4.52%  30n   respectively. For pseudo-EBLUP, the average ARB  is 
only 0.25%  10n   and 0.12%  30 .n   Both FH-HT and FH-HA perform very well. Their average 
ARB’s  are 3.91% and 3.48% respectively when 10.n   These ARB’s  decrease to 1.51% and 1.47% when 

30.n   FH-SRS performs poorly. Both area level estimators FH-HT and FH-HA perform well and these 
estimators are also design consistent. Again, FH-HA is slightly better than FH-HT in terms of ARB.  The 
results show that the use of survey weights in the unit level modeling is very important when the unit level 
model is incorrectly specified. The pseudo-EBLUP estimator leads to unbiased estimator even when the 
model is incorrectly specified. It is the best estimator when the model is incorrect. 

 
Table 4.2 
Average absolute relative bias ARB%  for scenario II 
 

Type Estimator 10n   30n   

Unit level EBLUP 
Pseudo-EBLUP 

4.31 
0.25 

4.52 
0.12 

Area level FH-SRS 
FH-HT 
FH-HA 

17.11 
3.91 
3.48 

17.87 
1.51 
1.47 

 
We now compare the relative root MSE for all the estimators. In particular, we computed both the true 

simulation relative root MSE (RRMSE) and the estimated relative root MSE based on the MSE estimators. 

The average true simulation relative root MSE is computed as  1
RRMSE RRMSE ,

m

ii
m


   where 
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   2

1

MSE 1 ˆRRMSE ,   and  MSE .
R

i r
i i i i

ri

Y
Y R




     

The average estimated relative root MSE is computed as  1
RRmse RRmse ,

m

ii
m


   where 

    

1 1

mse 1 1ˆ ˆRRmse ,   and  mse mse ,   and  .
ˆ

R R
i r r

i i i i i
r ri R R

 
  

      

The  mse r
i  is the estimated MSE of  r

i


 for the thi  area. They are computed using the formulas given in 

Sections 2 and 3.  

Table 4.3 reports the average RRMSE  and RRmse  over the 30 small areas. When the sample size 

10,n   RRMSE  is 4.98% for EBLUP and 5.49% for the pseudo-EBLUP respectively. As expected (You 

and Rao 2002), the pseudo-EBLUP has a slightly larger RRMSE than the one associated with EBLUP. Both 

the unit level EBLUP and pseudo-EBLUP estimators have much smaller RRMSE’s than the area level 

estimators. For area level models, FH-HT and FH-HA perform similarly, with corresponding average true 

RRMSE equal to 9.72% and 9.68% respectively, when 10.n   The FH-SRS performs poorly under 

informative sampling with the average true RRMSE equal to 18.89% when 10.n   Even when 30,n   the 

average RRMSE for FH-SRS is as large as 18.62%. Note that RRmse  is very close to its true value.  

In summary, the results in Table 4.3 show that the unit level estimators EBLUP and pseudo-EBLUP 

perform better than the area level estimators FH-HT and FH-HA under correct modeling. Both the area level 

estimators FH-HT and FH-HA perform reasonably well under informative sampling. As expected, FH-SRS 

performs poorly.  

 
Table 4.3 
Average RRMSE% for scenario I 
 

  10n   30n   

Type Estimator RRMSE  RRmse  RRMSE  RRmse  

Unit level EBLUP 
Pseudo-EBLUP 

4.98 
5.49 

5.09 
5.66 

3.01 
3.58 

3.13 
3.67 

Area level FH-SRS 
FH-HT 
FH-HA 

18.89 
9.72 
9.68 

17.53 
10.25 
9.71 

18.62 
6.67 
6.51 

16.34 
6.69 
6.63 

 
Table 4.4 displays the results of the average RRMSE under scenario II. The pseudo-EBLUP is the most 

robust estimator and has the smallest RRMSE :  the RRMSE’s  are 5.42% and 3.21% for 10n   and 

30n   respectively. For the area level estimators, FH-HT and FH-HA perform similarly, whereas FH-SRS 

performs poorly. When 10,n   RRMSE  for FH-HT is 11.68% and 11.21% for FH-HA. When 30,n   

RRMSE  is 7.24% for FH-HT and 6.79% for FH-HA. As expected, FH-SRS has large RRMSE  under 

informative sampling. The pseudo-EBLUP performs the best in terms of bias, standard errors and RRMSE 

under model misspecification. FH-HA is slightly better than FH-HT. The estimated RRmse  is very close 

to the true RRMSE  for all estimators.  
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Table 4.4 
Average RRMSE% for scenario II 
 

  10n   30n   

Type Estimator RRMSE  RRmse  RRMSE  RRmse  

Unit level EBLUP 
Pseudo-EBLUP 

6.78 
5.42 

6.94 
5.45 

5.62 
3.21 

5.81 
3.26 

Area level FH-SRS 
FH-HT 
FH-HA 

19.76 
11.68 
11.21 

17.43 
11.78 
11.27 

19.06 
7.24 
6.79 

16.24 
7.26 
6.91 

 
4.2.3  Comparison of confidence intervals 
 

We now compare the confidence intervals associated with the unit level and area level estimators. The 

confidence interval is in the form 2estimator mse,z  with 2z  denoting the  100 1 2 %  

percentile of the standard normal distribution. For example, the 95% confidence interval of the EBLUP 

estimator EBLUP
î  is obtained as  EBLUP EBLUPˆ ˆ1.96 mse ,i i   where  EBLUPˆmse i  is given by (2.6). The 

confidence intervals are computed as follows. For a given estimator  ˆ ,r
i  1, , ,r R   1, , ,i m   define 

the indicator variable  r
iI  as: 

 
          ˆ ˆ ˆ ˆ1  if  1.96 mse , 1.96 mse  

.
0  otherwise

r r r r
i i i i ir

iI
        


 

The confidence interval coverage rate is obtained as the average of  r
iI  over the 3,000R   simulations. 

Tables 4.5 and 4.6 present the 95% confidence interval coverage rates for the unit level and area level 

estimators under scenario I. The correlation coefficient   between the selection probabilities ijp  and ijy  

is presented in the first column to reflect the strength of informativeness of the PPS sampling.  

 
Table 4.5 
Confidence interval coverage rates under scenario I: 10n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.932 0.946 0.618 0.898 0.911 
0.88 0.945 0.948 0.649 0.882 0.908 
0.75 0.948 0.948 0.705 0.863 0.911 
0.51 0.944 0.949 0.825 0.845 0.916 
0.28 0.947 0.951 0.901 0.822 0.917 
0.12 0.948 0.949 0.924 0.778 0.893 
0.02 0.948 0.951 0.925 0.595 0.886 

Average rate 0.945 0.949 0.792 0.812 0.906 

 
We first discuss the coverage properties associated with the unit level estimators EBLUP and pseudo-

EBLUP. These tables show that, when the model is correct, the coverage rates for EBLUP and pseudo-

EBLUP are quite stable: the pseudo-EBLUP has slightly better coverage rate than EBLUP. When the sample 
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size 10,n   the average coverage rate for EBLUP is 94.5%, and 94.9% for pseudo-EBLUP. When the 

sample size 30,n   it is 93.4% for EBLUP and 94.8% for pseudo-EBLUP. As the sample size increases 

from 10n   to 30, the coverage rates for EBLUP deteriorate slightly more than those associated with the 

pseudo-EBLUP. The pseudo-EBLUP estimator is not as much affected by the degree of informativeness 

caused by the PPS sampling. The relatively stable coverage rates for EBLUP show that the sample is 

noninformative with respect to the correct unit level model. However, when 30,n   EBLUP has slightly 

lower coverage rate. 

 
Table 4.6 
Confidence interval coverage rates under scenario I: 30n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.905 0.946 0.265 0.932 0.926 
0.88 0.938 0.948 0.286 0.915 0.921 
0.75 0.941 0.949 0.377 0.911 0.924 
0.51 0.940 0.951 0.625 0.895 0.931 
0.28 0.941 0.950 0.806 0.874 0.929 
0.12 0.939 0.945 0.923 0.866 0.922 
0.02 0.937 0.948 0.937 0.772 0.917 

Average rate 0.934 0.948 0.603 0.881 0.924 

 
We now turn to the coverage rates associated with the area level estimators. As expected, FH-SRS has 

low coverage rates when the sampling is informative, and the coverage rate increases as the sampling design 

becomes non-informative. FH-HA has better coverage rate than FH-HT. The coverage rate for FH-HT 

decreases as the sampling design becomes non-informative. For example, when sample size 10,n   the 

coverage rate for FH-HT is only 59.5% when the sampling is non-informative, compared to 88.6% of the 

coverage rate for FH-HA. As the sample size increases, the coverage rate for FH-HT and FH-HA improves. 

The average coverage rate for FH-HA is 90.6% when 10n   and 92.4% when 30.n   FH-HT has a lower 

coverage rate than the one associated with FH-HA. The average coverage rate is only 81.2% for FH-HT 

when 10.n   The coverage rate for FH-SRS is very poor, 61.8%, under informative sampling when 10n   

and 26.5% when 30.n   As the sample size increases, the coverage rate decreases for FH-SRS under 

informative sampling. As expected, the coverage rate gradually increases for FH-SRS as the sampling 

becomes non-informative. Among all the estimators, for both sample size 10n   and 30,n   the pseudo-

EBLUP has the best coverage rate: FH-HA has the second best coverage rate.  

Tables 4.7 and 4.8 present the coverage rates under scenario II. The results show that the EBLUP has 

low coverage rate under informative sampling, whereas the pseudo-EBLUP has very stable and high 

coverage rates (all around and over 95%) under both the informative and non-informative sampling. For 

example, when 10,n   EBLUP has 84.6% coverage rate under informative sampling (correlation 

coefficient is 0.95), and when sample size increases to 30,n   EBLUP has an even lower coverage rate of 

62.9%. The average coverage rate is 90.4% for 10n   and 79.6% for 30n   for EBLUP under incorrect 

modeling. The results show that EBLUP is sensitive to the modeling when the sampling is informative. This 

is because EBLUP is completely model-based and ignores the sample design.  
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Table 4.7 
Confidence interval coverage rates under scenario II: 10n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.846 0.965 0.701 0.865 0.896 

0.88 0.855 0.964 0.729 0.887 0.893 

0.75 0.881 0.962 0.787 0.873 0.898 

0.51 0.921 0.961 0.872 0.848 0.898 

0.28 0.936 0.961 0.912 0.843 0.887 

0.12 0.945 0.955 0.917 0.765 0.867 

0.02 0.943 0.951 0.913 0.592 0.838 

Average rate 0.904 0.959 0.833 0.811 0.883 

 
Table 4.8 
Confidence interval coverage rates under scenario II: 30n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.629 0.969 0.239 0.913 0.923 

0.88 0.638 0.965 0.275 0.895 0.919 

0.75 0.708 0.964 0.406 0.908 0.923 

0.51 0.829 0.963 0.701 0.923 0.926 

0.28 0.902 0.964 0.854 0.911 0.921 

0.12 0.931 0.958 0.921 0.884 0.912 

0.02 0.937 0.953 0.918 0.778 0.894 

Average rate 0.796 0.962 0.616 0.887 0.918 

 
Among the three area level estimators, FH-HA performs the best. The coverage rate for FH-HA is very 

stable, and the average coverage rate for FH-HA is 88.3% when 10n   and 91.8% when 30.n   FH-HT 

has lower coverage rate when the sampling is very non-informative, particularly when sample size 10.n   

The average coverage rate for FH-HT is only 81.1% when 10n   and 88.7% when 30.n   The results 

show that FH-HA is superior to FH-HT. FH-SRS performs poorly when the sampling is informative, 

particularly when the sample size 30.n   However, FH-SRS performs relatively well when the sampling 

becomes non-informative. The average coverage rate for FH-SRS is 83.3% when 10,n   but only 61.6% 

when the sample size 30.n   

It is clear that pseudo-EBLUP has very high and stable coverage rate under incorrect modeling. FH-HA 
also has very stable but slightly lower coverage rate. Both EBLUP and FH-SRS have lower coverage rate 
as the sample size increases, especially when the sampling is informative.  

 
5  Application to real data 
 

In this section, we compare the unit level and area level estimates through a real data analysis. The data 

set we studied is the corn and soybean data provided by Battese et al. (1988). They considered the estimation 

of mean hectares of corn and soybeans per segment for twelve counties in north-central Iowa. Among the 
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twelve counties, there were three counties with a single sample segment. We combined these three counties 

into a single one, resulting in 10 counties in our data set with sample size in  ranging from 2 to 5 in each 

county. The total number of segments iN  (population size) within each county ranged from 402 to 1,505. 

Following You and Rao (2002), we assumed simple random sampling within each county, and the basic 

survey weight was computed as .ij i iw N n  For unit level modeling, ijy  is the number of hectares of corn 

(or soybean) in the thj  segment of the thi  county, the auxiliary variables are the number of pixels classified 

as corn and soybeans as in Battese et al. (1988). We applied the unit level model to the modified data set 

and obtained the EBLUP and pseudo-EBLUP estimates. For area level modeling, we first obtained the area 

level direct sample estimates SRS
î  based on the SRS sampling. Next, we applied the Fay-Herriot model to 

the area level direct estimates and obtained the FH-SRS area level estimates. Figure 5.1 compares the area 

level direct estimates with the model-based unit level and area level estimates. In terms of point estimation, 

the EBLUP and pseudo-EBLUP estimates are almost identical as in You and Rao (2002). This is because 

the unit level model is a correct model for these data (Battese et al. 1988). The model-based area level 

estimates FH-SRS and the area level direct estimates are quite similar in this example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Comparison of direct and model-based estimates. 

 
 

Figure 5.2 compares the standard errors of the direct and model-based estimators. The standard errors of 

the model-based estimators are the squared root of the estimated MSE. Both the unit level estimators EBLUP 

and pseudo-EBLUP have small and stable standard errors. As expected, pseudo-EBLUP has slightly larger 

standard errors than EBLUP. It is clear that the direct and FH-SRS standard errors are very variable and are 

very unstable. This example shows the effectiveness of the unit level EBLUP and pseudo-EBLUP 

estimators.  

                                             Direct and model-based estimates  
                                      Direct                   EBLUP                 Pseudo-EBLUP                 FH-SRS 
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Figure 5.2  Comparison of direct and model-based standard errors. 

 
6  Conclusions  
 

In this paper, we compared performance of the estimators based on the unit level nested error regression 

model and the area level Fay-Herriot model through a design-based simulation study. We compared the 

point estimates and coverage rate of confidence intervals of unit level and area level estimators. Overall, the 

unit level pseudo-EBLUP estimator performs the best in terms of bias and coverage rate under both 

informative and non-informative sampling. The EBLUP estimator performs well under correct modeling 

since the sampling is noninformative under correct unit level model (2.2). The pseudo-EBLUP estimator is 

also quite robust to the model misspecification as well. In practice, we suggest to construct the pseudo-

EBLUP estimators using the survey weights and the unit level observations as discussed in Section 2.2. For 

area level models, FH-HA performs better than FH-HT, and FH-SRS performs poorly. We therefore 

recommend to construct the weighted HA estimators and then apply the Fay-Herriot model to obtain the 

corresponding model-based estimators if area level small area estimators are used.  
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