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Statistical matching using fractional imputation 

Jae Kwang Kim, Emily Berg and Taesung Park1 

Abstract 

Statistical matching is a technique for integrating two or more data sets when information available for matching 
records for individual participants across data sets is incomplete. Statistical matching can be viewed as a missing 
data problem where a researcher wants to perform a joint analysis of variables that are never jointly observed. A 
conditional independence assumption is often used to create imputed data for statistical matching. We consider 
a general approach to statistical matching using parametric fractional imputation of Kim (2011) to create imputed 
data under the assumption that the specified model is fully identified. The proposed method does not have a 
convergent expectation-maximisation (EM) sequence if the model is not identified. We also present variance 
estimators appropriate for the imputation procedure. We explain how the method applies directly to the analysis 
of data from split questionnaire designs and measurement error models. 

 
Key Words: Data combination; Data fusion; Hot deck imputation; Split questionnaire design; Measurement error model. 

 
 

1  Introduction 
 

Survey sampling is a scientific tool for making inference about the target population. However, we often 

do not collect all the necessary information in a single survey, due to time and cost constraints. In this case, 

we wish to exploit, as much as possible, information already available from different data sources from the 

same target population. Statistical matching, sometimes called data fusion (Baker, Harris and O’Brien 1989) 

or data combination (Ridder and Moffit 2007), aims to integrate two or more data sets when information 

available for matching records for individual participants across data sets is incomplete. D’Orazio, Zio and 

Scanu (2006) and Leulescu and Agafitei (2013) provide comprehensive overviews of the statistical 

matching techniques in survey sampling. 

Statistical matching can be viewed as a missing data problem where a researcher wants to perform a joint 

analysis of variables that are never jointly observed. Moriarity and Scheuren (2001) provide a theoretical 

framework for statistical matching under a multivariate normality assumption. Rässler (2002) develops 

multiple imputation techniques for statistical matching with pre-specified parameter values for non-

identifiable parameters. Lahiri and Larsen (2005) address regression analysis with linked data. Ridder and 

Moffit (2007) provide a rigorous treatment of the assumptions and approaches for statistical matching in the 

context of econometrics. 

Statistical matching aims to construct fully augmented data files to perform statistically valid joint 

analyses. To simplify the setup, suppose that two surveys, Survey A and Survey B, contain partial 

information about the population. Suppose that we observe x  and 1y  from the Survey A sample and observe 

x  and 2y  from the Survey B sample. Table 1.1 illustrates a simple data structure for matching. If the Survey 

B sample (Sample B) is a subset of the Survey A sample (Sample A), then we can apply record linkage 

techniques (Herzog, Scheuren and Winkler 2007) to obtain values of 1y  for the survey B sample. However, 

in many cases, such perfect matching is not possible (for instance, because the samples may contain 
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non-overlapping subsets), and we may rely on a probabilistic way of identifying the “statistical twins” from 

the other sample. That is, we want to create 1y  for each element in sample B by finding the nearest neighbor 

from Sample A. Nearest neighbor imputation has been discussed by many authors, including Chen and Shao 

(2001) and Beaumont and Bocci (2009), in the context of missing survey items. 

 
Table 1.1 
A simple data structure for matching 
 

 X  1Y  2Y  

Sample A o o   
Sample B o   o 

 
Finding the nearest neighbor is often based on “how close” they are in terms of ’sx  only. Thus, in many 

cases, statistical matching is based on the assumption that 1y  and 2y  are independent, conditional on .x  

That is,  

 1 2 .y y x  (1.1) 

Assumption (1.1) is often referred to as the conditional independence (CI) assumption and is heavily used 

in practice. 

In this paper, we consider an alternative approach that does not rely on the CI assumption. After we 

discuss the assumptions in Section 2, we present the proposed methods in Section 3. Furthermore, we 

consider two extensions, one to split questionnaire designs (in Section 4) and the other to measurement error 

models (in Section 5). Results from two simulation studies are presented in Section 6. Section 7 concludes 

the paper. 

 
2  Basic setup 
 

For simplicity of the presentation, we consider the setup of two independent surveys from the same target 

population consisting of N  elements. As discussed in Section 1, suppose that Sample A collects information 

only on x  and 1y  and Sample B collects information only on x  and 2 .y  

To illustrate the idea, suppose for now that  1 2, ,x y y  are generated from a normal distribution such that  

 
1 2

1 1 11 12

2 2 22

, .
x xx x xx

y N

y

   
  
 

     
     
     

           

   

Clearly, under the data structure in Table 1.1, the parameter 12  is not estimable from the samples. The 

conditional independence assumption in (1.1) implies that 12 1 2= x x xx     and 12 1 2= .x x    That is, 

12  is completely determined from other parameters, rather than estimated directly from the realized 

samples. 
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Synthetic data imputation under the conditional independence assumption in this case can be 
implemented in two steps: 
 

[Step 1] Estimate  1f y x  from Sample A, and denote the estimate by  1
ˆ .af y x  

[Step 2] For each element i  in Sample B, use the ix  value to generate imputed value(s) of 1y  from 

 1
ˆ .a if y x  

 

Since 1y  values are never observed in Sample B, synthetic values of 1y  are created for all elements in 

Sample B, leading to synthetic imputation. Haziza (2009) provides a nice review of literature on imputation 

methodology. Kim and Rao (2012) present a model-assisted approach to synthetic imputation when only x  

is available in Sample B. Such synthetic imputation completely ignores the observed information in 2y  

from Sample B. 

Statistical matching based on conditional independence assumes that  1 2Cov , = 0.y y x  Thus, the 

regression of 2y  on x  and 1y  using the imputed data from the above synthetic imputation will estimate a 

zero regression coefficient for 1.y  That is, the estimate 2̂  for  

 2 0 1 2 1
ˆ ˆ ˆˆ = ,y x y      

will estimate zero. Such analyses can be misleading if CI does not hold. To explain why, we consider an 
omitted variable regression problem:  

 
     

     

1 1 1
1 0 1 2 1

2 2 2
2 0 1 2 2

=

=

y x z e

y x z e

  
  

  

  
  

where 1 2, ,z e e  are independent and are not observed. Unless    1 2
2 2= = 0,   the latent variable z  is an 

unobservable confounding factor that explains why  1 2Cov , 0.y y x   Thus, the coefficient on 1y  in the 

population regression of 2y  on x  and 1y  is not zero. 

Note that the CI assumption is an assumption for model identification. Another identifying assumption 

is the instrumental variable (IV) assumption, as described in the following remark. 
 

Remark 2.1 We present a formal description of the IV assumption. First, assume that we can decompose 

x  as  1 2= ,x x x  such that 
 

(i)    2 1 2 1 2 2 1, , = ,f y x x y f y x y  

(ii)    1 2 1 1 2 1, = ,f y x x a f y x x b   
 

for some .a b  Thus, 1x  is conditionally independent of 2y  given 2x  and 1y  but 1x  is correlated with 1y  

given 2 .x  Note that 2x  may be null or have a degenerate distribution, such as an intercept. The variable 

1x  satisfying the above two conditions is often called an instrumental variable (IV) for 1.y  The directed 

acyclic graph in Figure 2.1 illustrates the dependence structure of a model with an instrumental variable. 

Ridder and Moffit (2007) used “exclusion restrictions” to describe the instrumental variable assumption. 

One example where the instrumental variable assumption is reasonable is repeated surveys. In the repeated 

survey, suppose that ty  is the study variable at year t  and satisfies Markov property  
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    1 1 1, , = ,t t t tP y y y P y y    

where  tP y  denotes a cumulative distribution function. In this case, 1ty   is an instrumental variable for 

.ty  In fact, any last observation of  sy s t  is the instrumental variable for .ty  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Graphical illustration of the dependence structure for a model in which 1x  is an instrumental 

variable for 1y  and 2x  is an additional covariate in the models for 2y  and 1 .y  

 
Under the instrumental variable assumption, one can use two-step regression to estimate the regression 

parameters of a linear model. The following example presents the basic ideas. 
 

Example 2.1 Consider the two sample data structure in Table 1.1. We assume the following linear 
regression model:  

 2 0 1 1 2 2= ,i i i iy y x e      (2.1) 

where  20,i ee   and ie  is independent of  1 2 1, ,j j jx x y  for all , .i j  In this case, a consistent estimator 

of  0 1 2= , ,      can be obtained by the two-stage least squares (2SLS) method as follows: 
 

1. From Sample ,A  fit the following “working model” for 1y   

  2
1 0 1 1 2 2= , 0,i i i i i uy x x u u        (2.2) 

to obtain a consistent estimator of  0 1 2= , ,      defined by  

     1

0 1 2 1ˆ ˆ ˆ ˆ= , , = X X X Y        

where  0 1 2= , ,X X X X  is a matrix whose thi  row is  1 21, ,i ix x  and 1Y  is a vector with 1iy  

being the thi  component.  

2. A consistent estimator of  0 1 2= , ,      is obtained by the least squares method for the 

regression of 2iy  on  1 2ˆ1, ,i iy x  where 1 0 1 1 2 2ˆ ˆ ˆˆ = .i i iy x x     
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Asymptotic unbiasedness of the 2SLS estimator under the instrumental variable assumption is discussed 

in Appendix A. The 2SLS method is not directly applicable if the regression model (2.1) is nonlinear. Also, 

while the 2SLS method gives estimates of the regression parameters, 2SLS does not provide consistent 

estimators for more general parameters such as  2 1= Pr < 1 < 3 .y y  Stochastic imputation can provide 

a solution for estimating a more general class of parameters. We explain how to modify parametric fractional 

imputation of Kim (2011) to address general purpose estimation in statistical matching problems. 

 
3  Fractional imputation 
 

We now describe the fractional imputation methods for statistical matching without using the CI 

assumption. The use of fractional imputation for statistical matching was originally presented in Chapter 9 

of Kim and Shao (2013) under the IV assumption. In this paper, we present the methodology without 

requiring the IV assumption. We only assume that the specified model is fully identified. The identifiability 

of the specified model can be easily checked in the computation of the proposed procedure. 

To explain the idea, note that 1y  is missing in Sample B and our goal is to generate 1y  from the 

conditional distribution of 1y  given the observations. That is, we wish to generate 1y  from  

      1 2 2 1 1, , .f y x y f y x y f y x  (3.1) 

 
To generate 1y  from (3.1), we can consider the following two-step imputation: 

 
1. Generate *

1y  from  1
ˆ .af y x  

2. Accept *
1y  if  *

2 1,f y x y  is sufficiently large.  
 
Note that the first step is the usual method under the CI assumption. The second step incorporates the 

information in 2 .y  The determination of whether  *
2 1,f y x y  is sufficiently large required for Step 2 is 

often made by applying a Markov Chain Monte Carlo (MCMC) method such as the Metropolis-Hastings 

algorithm (Chib and Greenberg 1995). That is, let  1
1

ty   be the current value of 1y  in the Markov Chain. 

Then, we accept *
1y  with probability  

     
  

*
2 11*

1 1 1
2 1

,
, = min 1, .

,
t

t

f y x y
R y y

f y x y




  
 
  

  

Such algorithms can be computationally cumbersome because of slow convergence of the MCMC 

algorithm. 

Parametric fractional imputation of Kim (2011) enables generating imputed values in (3.1) without 

requiring MCMC. The following EM algorithm by fractional imputation can be used: 

1. For each ,i B  generate m  imputed values of 1 ,iy  denoted by    * 1 *
1 1, , ,m
i iy y  from  1

ˆ ,a if y x  

where  1âf y x  denotes the estimated density for the conditional distribution of 1y  given x  

obtained from Sample A.  
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2. Let t̂  be the current parameter value of   in  2 1, .f y x y  For the thj  imputed value  *
1 ,j
iy  

assign the fractional weight  

  
  **

2 1
ˆ, ;j

i i i tij tw f y x y    

such that *

=1
= 1.

m

ijj
w  

3. Solve the fractionally imputed score equation for   

  
  **

1 2
=1

; , , = 0
m

j
ib i i iij t

i B j

w w S x y y

   (3.2) 

to obtain 1
ˆ ,t   where    1 2 2 1; , , = log , ; ,S x y y f y x y     and ibw  is the sampling weight 

of unit i  in Sample B.  

4. Go to Step 2 and continue until convergence.  
 

When the model is identified, the EM sequence obtained from the above PFI method will converge. If 

the specified model is not identifiable then there is no unique solution to maximizing the observed likelihood 

and the above EM sequence does not converge. In (3.2), note that, for sufficiently large ,m  

 
 

  
      

    

  

*
1 2 2 1 1 1**

1 2 *
=1 2 1 1 1

1 2 2

ˆ ˆ; , , , ;
; , ,

ˆ ˆ, ;

ˆ= ; , , , ; .

jm
i i i i i t a ij

i i iij t j
j i i i t a i

i i i i t

S x y y f y x y f y x dy
w S x y y

f y x y f y x dy

E S x Y y x y

 




 

 
   

If 1iy  is categorical, then the fractional weight can be constructed by the conditional probability 

corresponding to the realized imputed value (Ibrahim 1990). Step 2 is used to incorporate observed 

information of 2iy  in Sample B. Note that Step 1 is not repeated for each iteration. Only Step 2 and Step 3 

are iterated until convergence. Because Step 1 is not iterated, convergence is guaranteed and the observed 

likelihood increases, as long as the model is identifiable. See Theorem 2 of Kim (2011). 
 
Remark 3.1 In Section 2, we introduce IV only because this is what it is typically done in the literature to 
ensure identifiability. The proposed method itself does not rely on this assumption. To illustrate a situation 
where we can identify the model without introducing the IV assumption, suppose that the model is  

 2 0 1 2 1 2

1 0 1 1

=

=

y x y e

y x e

  
 

  

 
  

with  2 2
1 10,e N x   and  2

2 1 20, .e e N   Then  

      2 2 1 1 1= ,f y x f y x y f y x dy   

is also a normal distribution with mean    0 2 0 1 2 1 x         and variance 2 2 2 2
2 2 1 .x    Under 

the data structure in Table 1.1, such a model is identified without assuming the IV assumption. The 
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assumption of no interaction between 1y  and x  in the model for 2y  is key to ensuring the model is 

identifiable.  
 

Instead of generating  *
1

j
iy  from  1

ˆ ,a if y x  we can consider a hot-deck fractional imputation (HDFI) 

method, where all the observed values of 1iy  in Sample A are used as imputed values. In this case, the 

fractional weights in Step 2 are given by  

     ** *
0 2 1

ˆ ˆ, ; ,j
ij t ij i i i tw w f y x y    

where  

 
 

 
1*

0

1

ˆ
= .

ˆ
a j i

ij

ka a j k
k A

f y x
w

w f y x



 (3.3) 

The initial fractional weight *
0ijw  in (3.3) is computed by applying importance weighting with  

        1 1 1
ˆ ˆ ˆ ˆ=a j a j a ia a j i

i A

f y f y x f x dx w f y x


    

as the proposal density for 1 .jy  The M-step is the same as for parametric fractional imputation. See Kim 

and Yang (2014) for more details on HDFI. In practice, we may use a single imputed value for each unit. In 

this case, the fractional weights can be used as the selection probability in Probability-Proportional-to-Size 

(PPS) sampling of size = 1.m  

For variance estimation, we can either use a linearization method or a resampling method. We first 

consider variance estimation for the maximum likelihood estimator (MLE) of .  If we use a parametric 

model    1 1 1= ;f y x f y x   and  2 1 2, ; ,f y x y   the MLE of  1 2= ,    is obtained by solving  

       1 1 2 1 2, , = 0,0 ,S S    (3.4) 

where    1 1 1 1= ,ia ii A
S w S 

     1 1 1 1 1= log ;i i iS f y x     is the score function of 1 ,   

     2 1 2 2 2 2 1 2, = , ; , ,S E S X Y       

   2 2 2 2= ,ib ii B
S w S 

  and    2 2 2 1 2 2= log , ;i i i iS f y x y     is the score function of 2 .  Note 

that we can write     2 1 2 2 2 2, = , ; .ib i i ii B
S w E S x y   

  Thus,  

 

 
     

   

    

     

2 2 1 1 2 1 2 1

2
1 1 1 1 2 1 2 1

2 2 1 1 2

2 2 2 1 1 2

; , ;
=

; , ;

= , ;

, ; , ;

i i i i

ib
i B i i i

ib i i i i
i B

ib i i i i i i
i B

S f y x f y x y dy
S w

f y x f y x y dy

w E S S x y

w E S x y E S x y

  


   

  

   







  
 

     



 








  

and  
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 
     

   

 

    

     

2 2 1 1 2 1 2 1

2
2 2 1 1 2 1 2 1

2 2 2
2

2 2 2 2 2

2 2 2 2 2 2

; , ;
=

; , ;

= , ;

, ;

, ; , ; .

i i i i

ib
i B i i i

ib i i i
i B

ib i i i i
i B

ib i i i i i i
i B

S f y x f y x y dy
S w

f y x f y x y dy

w E S x y

w E S S x y

w E S x y E S x y

  


   

 

  

   









  
 

     
 

  
 

 










  

Now,  2 1S      can be consistently estimated by  

       * * * *
21 2 2 1 1 1 1

=1

ˆ ˆ ˆˆ = ,
m

ib ij ij ij i
i B j

B w w S S S  



   (3.5) 

where     **
1 1 1 1 1

ˆ ˆ= ; , ,j
ij i iS S x y       **

2 2 2 2 1 2
ˆ ˆ= ; , , ,j

ij i i iS S x y y   and     ** *
1 1 1 1 1=1

ˆ ˆ= ; , .
m j

i ij i ij
S w S x y   

Also,  2 2S      can be consistently estimated by  

  * *
22 2 2 22

=1

ˆˆ ˆ=
m

ib ij ij
i B j

I w w S B


     (3.6) 

where  

       * * * *
22 2 2 2 2 2 2

=1

ˆ ˆ ˆˆ = ,
m

ib ij ij ij i
i B j

B w w S S S  



    

    **
2 2 2 2 1 2 2= ; , ,j

ij i i iS S x y y      and    * * *
2 2 2 2=1

= .
m

i ij ijj
S w S   

Using a Taylor expansion with respect to 1 ,  

 
         

   

1

2 1 2 2 1 2 2 1 1 1 1
1 1

2 1 1

ˆ , ,

= ,

S S E S E S S

S KS

      
 

 

                 


  

and we can write  

       
1 1

2 2 2 1 1 2
2 2

ˆ .V E S V S KS E S  
 

                     
   

Writing  

    2 2= ,ib i
i B

S w s 

   
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with     2 2 2 2= , ; ,i i i is E S x y    a consistent estimator of   2V S   can be obtained by applying a 

design-consistent variance estimator to 2ˆib ii B
w s

  with  * *
2 2 2=1

ˆˆ = .
m

i ij ijj
s w S   Under simple random 

sampling for Sample B, we have  

    2
2 2 2

ˆ ˆ ˆ= .B i i
i B

V S n s s 



   

Also,   1 1V KS   is consistently estimated by  

  2 1
ˆ ˆ ˆ ˆ= ,V KV S K    

where 1
21 11

ˆ ˆ ˆ= ,K B I   21B̂  is defined in (3.5), and  11 1 1 1
ˆ =I S      evaluated at 1 1̂= .   Since the two 

terms  2S   and  1 1S   are independent, the variance can be estimated by  

     1 1
22 2 2 22

ˆˆ ˆ ˆ ˆ ˆ ,V I V S V I        

where 22Î  is defined in (3.6). 

More generally, one may consider estimation of a parameter   defined as a root of the census estimating 

equation  1 2=1
; , , = 0.

N

i i ii
U x y y  Variance estimation of the FI estimator of   computed from 

  **
1 2=1

; , , = 0
m j

ib ij i i ii B j
w w U x y y

   is discussed in Appendix B. 

 
4  Split questionnaire survey design 
 

In Section 3, we consider the situation where Sample A and Sample B are two independent samples from 

the same target population. We now consider another situation of a split questionnaire design where the 

original sample S  is selected from a target population and then Sample A and Sample B are randomly 

chosen such that =A B S  and = .A B   We observe  1,x y  from Sample A and observe  2,x y  from 

Sample B. We are interested in creating fully augmented data with observation  1 2, ,x y y  in .S  

Such split questionnaire survey designs are gaining popularity because they reduce response burden 

(Raghunathan and Grizzle 1995; Chipperfield and Steel 2009). Split questionnaire designs have been 

investigated, for example, for the Consumer Expenditure survey (Gonzalez and Eltinge 2008) and the 

National Assessment of Educational Progress (NAEP) survey in the US. In applications of split-

questionnaire designs, analysts may be interested in multiple parameters such as the mean of 1y  and the 

mean of 2 ,y  in addition to the coefficient in the regression of 2y  on 1.y  

We consider a design where the original Sample S  is partitioned into two subsamples: A  and .B  We 

assume that ix  is observed for ,i S  1iy  is collected for i A  and 2 iy  is collected for .i B  The 

probability of selection into A  or B  may depend on ix  but does not depend on 1iy  or 2 .iy  As a 

consequence, the design used to select subsample A  or B  is non-informative for the specified model (Fuller 

2009, Chapter 6). We let iw  denote the sampling weight associated with the full sample .S  We assume a 

procedure is available for estimating the variance of an estimator of the form ˆ = ,i ii S
Y w y

  and we denote 

the variance estimator by  ˆ .s i ii S
V w y

  
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A procedure for obtaining a fully imputed data set is as follows. First, use the procedure of Section 3 to 

obtain imputed values   *
1 : , = 1, ,j
iy i B j m   and an estimate, ˆ,  of the parameter in the distribution 

 2 1 , ; .f y y x   The estimate ̂  is obtained by solving  

   **
2 1 2

=1

; , , = 0,
m

j
i ij i i i

i B j

w w S x y y

   (4.1) 

where    2 1 2 2 1; , , = log , ; .S x y y f y y x     Given ˆ,  generate imputed values 
   *

2 2 1
ˆ, ; ,j

i i iy f y y x   for i A  and = 1, , .j m  

Under the assumption that the model is identified, the parameter estimator ̂  generated by solving (4.1) 

is fully efficient in the sense that the imputed value of 2 iy  for Sample A leads to no efficiency gain. To see 

this, note that the score equation using the imputed value of 2iy  is computed by  

      * *1 *
2 1 2 2 1 2

=1 =1

; , , ; , , = 0.
m m

j j
i i i i i ij i i i

i A j i B j

w m S x y y w w S x y y 

 

     (4.2) 

Because    * 1 *
2 2, , m

i iy y  are generated from  2 1
ˆ, ; ,i if y y x   

      *1
2 1 2 2 1 2 1

=1

ˆ; , , = ; , , , ; .lim
m

j
i i i i i i i i i

m i A j i A

p w m S x y y w E S x y Y y x  

  
     

Thus, by the property of score function, the first term of (4.2) evaluated at ˆ=   is close to zero and the 

solution to (4.2) is essentially the same as the solution to (4.1). That is, there is no efficiency gain in using 

the imputed value of 2 iy  in computing the MLE for   in  2 1 , ; .f y y x   

However, the imputed values of 2 iy  can improve the efficiency of inferences for parameters in the joint 

distribution of  1 2, .i iy y  As a simple example, consider estimation of 2 ,  the marginal mean of 2 .iy  Under 

simple random sampling, the imputed estimator of  2= E Y  is 

  *1
, 2 2

=1

1
ˆ = ,

m
j

I m i i
i A j i B

m y y
n

 

 

  
 

  
    (4.3) 

where    * 1 *
2 2, , m

i iy y  are generated from  2 1
ˆ, ; .i if y y x   For sufficiently large ,m  we can write  

 

 

, 2 2

2 1 2

1
ˆ ˆ=

1 ˆ= , ; .

I i i
i A i B

i i i
i A i B

y y
n

E y y x y
n






 

 

  
 

  
 

 

 
  

Under the setup of Example 2.1, we can express 2 0 1 1 2 2
ˆ ˆ ˆˆ =i i iy y x     where  0 1 2

ˆ ˆ ˆ, ,    satisfies  

  2 0 1 1 2 2
ˆ ˆ ˆˆ = 0i i i i

i B

y y x  


     
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and 1 0 1 1 2 2ˆ ˆ ˆˆ =i i iy x x     with  0 1 2ˆ ˆ ˆ, ,    satisfying  1 0 1 1 2 2ˆ ˆ ˆ = 0.i i ii A
y x x  


    Thus, 

ignoring the smaller order terms, we have  

      , 2 2 2

1 1 1
ˆ ˆ=I

b

V V y V y y
n n n

 


  
 

  

which is smaller than the variance of the direct estimator 1
2ˆ = .b b ii B

n y 
  

 
5  Measurement error models 
 

We now consider an application of statistical matching to the problem of measurement error models. 

Suppose that we are interested in the parameter   in the conditional distribution  2 1; .f y y   In the 

original sample, instead of observing  1 2, ,i iy y  we observe  2, ,i ix y  where ix  is a contaminated version 

of 1 .iy  Because inference for   based on  2,i ix y  may be biased, additional information is needed. One 

common way to obtain additional information is to collect  1,i ix y  in an external calibration study. In this 

case, we observe  1,i ix y  in Sample A and  2,i ix y  in Sample B, where Sample A is the calibration sample, 

and Sample B is the main sample. Guo and Little (2011) discuss an application of external calibration. 

The external calibration framework can be expressed as a statistical matching problem. Table 5.1 makes 

the connection between statistical matching and external calibration explicit. An instrumental variable 

assumption permits inference for   based on data with the structure of Table 1.1. In the notation of the 

measurement error model, the instrumental variable assumption is  

        2 1 2 1 1 1, = and = = ,i i i i i i i i if y y x f y y f y x a f y x b  (5.1) 

for some .a b  The instrumental variable assumption may be judged reasonable in applications related to 

error in covariates because the subject-matter model of interest is  2 1 ,i if y y  and ix  is a contaminated 

version of 1iy  that contains no additional information about 2iy  given 1 .iy  

 
Table 5.1 
Data structure for measurement error model 
 

  
ix  1iy  2 iy  

Survey A (calibration study)  o o  
Survey B (main study)  o  o 

 
For fully parametric  2 1i if y y  and  1 ,i if y x  one can use parametric fractional imputation to execute 

the EM algorithm. This method requires evaluating the conditional expectation of the complete-data score 

function given the observed values. To evaluate the conditional expectation using fractional imputation, we 

first express the conditional distribution of 1y  given  2,x y  as,  

      1 2 1 2 1, .f y x y f y x f y y  (5.2) 
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We let an estimator  1â i if y x  of  1i if y x  be available from the calibration sample (Sample A). 
Implementation of the EM algorithm via fractional imputation involves the following steps: 
 

1. For each ,i B  generate  *
1

j
iy  from  1

ˆ ,a if y x  for = 1, , .j m  

2. Compute the fractional weights  

  
  **

2 1
ˆ;j

i i tij tw f y y    

with  
*

=1
= 1.

m

ij tj
w  

3. Update   by solving  

  
  **

1 2
=1

; , = 0,
m

j
ib i iij t

i B j

w w S y y

    

where    1 2 2 1; , = log ; .S y y f y y     

4. Go to Step 2 until convergence.  
 

The method above requires generating data from  1 .f y x  For some nonlinear models or models with 

non-constant variances, simulating from the conditional distribution of 1y  given x  may require Monte 

Carlo methods such as accept-reject or Metropolis Hastings. The simulation of Section 6.2 exemplifies a 

simulation in which the conditional distribution of 1y x  has no closed form expression. In this case, we 

may consider an alternative approach, which may be computationally simpler. To describe this approach, 

let  1h y x  be the “working” conditional distribution, such as the normal distribution, from which samples 

are easily generated. We assume that estimates  1âf y x  and  1
ˆ

ah y x  of  1f y x  and  1 ,h y x  

respectively, are available from Sample A. Implementation of the EM algorithm via fractional imputation 

then involves the following steps: 
 

1. For each ,i B  generate  * j
ix  from  1

ˆ ,a ih y x  for = 1, , .j m  

2. Compute the fractional weights  

  
        * * **

2 1 1 1
ˆ ˆ ˆ;j j j

i i t a i i a i iij tw f y y f y x h y x  (5.3) 

with  
*

=1
= 1.

m

ij tj
w  

3. Update   by solving  

  
  **

1 2
=1

; , = 0.
m

j
ib i iij t

i B j

w w S y y

    

4. Go to Step 2 until convergence.  
 

Variance estimation is a straightforward application of the linearization method in Section 3. The hot-
deck fractional imputation method described in Section 3 with fractional weights defined in (3.3) also 
extends readily to the measurement error setting. 
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6  Simulation study 
 

To test our theory, we present two limited simulation studies. The first simulation study considers the 
setup of combining two independent surveys of partial observation to obtain joint analysis. The second 
simulation study considers the setup of measurement error models with external calibration. 

 
6.1  Simulation one 
 

To compare the proposed methods with the existing methods, we generate 5,000 Monte Carlo samples 
of  1 2, ,i i ix y y  with size = 400,n  where  

 1 2 1 0.7
, ,

3 0.7 1
i

i

y
N

x

     
     

     
   

 2 0 1 1= ,i i iy y e    (6.1) 

 20, ,ie N   and    2
0 1= , , = 1,1,1 .       Note that, in this setup, we have  2 1, =f y x y  

 2 1f y y  and so the variable x  plays the role of the instrumental variable for 1.y  

Instead of observing  1 2, ,i i ix y y  jointly, we assume that only  1 ,y x  are observed in Sample A and 

only  2 ,y x  are observed in Sample B, where Sample A is obtained by taking the first = 400an  elements 

and Sample B is obtained by taking the remaining = 400bn  elements from the original sample. We are 

interested in estimating four parameters: three regression parameters 2
0 1, ,    and =  

 1 2< 2, < 3 ,P y y  the proportion of 1 < 2y  and 2 < 3.y  Four methods are considered in estimating the 

parameters: 
 

1. Full sample estimation (Full): Uses the complete observation of  1 2,i iy y  in Sample B.  

2. Stochastic regression imputation (SRI): Use the regression of 1y  on x  from Sample A to obtain 

 2
0 1 1ˆ ˆ ˆ, , ,    where the regression model is 1 0 1 1=y x e    with  2

1 10, .e   For each 

,i B  = 10m  imputed values are generated by    * *
1 0 1ˆ ˆ=j j

i i iy x e    where 
   * 2

1ˆ0, .j
ie N   

3. Parametric fractional imputation (PFI) with = 10m  using the instrumental variable assumption.  

4. Hot-deck fractional imputation (HDFI) with = 10m  using the instrumental variable assumption.  

 
Table 6.1 presents Monte Carlo means and Monte Carlo variances of the point estimators of the four 

parameters of interest. SRI shows large biases for all parameters considered because it is based on the 

conditional independence assumption. Both PFI and HDFI provide nearly unbiased estimators for all 

parameters. Estimators from HDFI are slightly more efficient than those from PFI because the two-step 

procedure in HDFI uses the full set of respondents in the first step. The theoretical asymptotic variance of 

1̂  computed from PFI is  

  
   

 
2

2
1 2 2

1 1 0.7 1 1ˆ 2 1 1 0.7 0.0103
400 2 4000.7 0.7

V 


  
 

    
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which is consistent with the simulation result in Table 6.1. In addition to point estimation, we also compute 

variance estimators for PFI and HDFI methods. Variance estimators show small relative biases (less than 

5% in absolute values) for all parameters. Variance estimation results are not presented here for brevity. 

 
Table 6.1 
Monte Carlo means and variances of point estimators from Simulation One. (SRI, stochastic regression 
imputation; PFI, parametric fractional imputation; HDFI; hot-deck fractional imputation) 
 

Parameter   Method   Mean   Variance  

0   Full   1.00   0.0123  
   SRI   1.90   0.0869 
  PFI   1.00   0.0472  
  HDFI   1.00   0.0465  

1   Full   1.00   0.00249  
   SRI   0.54   0.01648  
  PFI   1.00   0.01031  
  HDFI   1.00   0.01026  
2   Full   1.00   0.00482  
   SRI   1.73   0.01657  
  PFI   0.99   0.02411  
  HDFI   0.99   0.02270  

   Full   0.374   0.00058  
   SRI   0.305   0.00255  
  PFI   0.375   0.00059  
  HDFI   0.375  0.00057  

 
The proposed method is based on the instrumental variable assumption. To study the sensitivity of the 

proposed fractional imputation method to violations of the instrumental variable assumption, we performed 

an additional simulation study. Now, instead of generating 2 iy  from (6.1), we use  

  2 1= 0.5 3 ,i i i iy y x e     (6.2) 

where  0,1ie N  and   can take non-zero values. We use three values of ,   0,0.1,0.2 ,   in the 

sensitivity analysis and apply the same PFI and HDFI procedure that is based on the assumption that x  is 

an instrumental variable for 1.y  Such assumption is satisfied for = 0,  but it is weakly violated for = 0.1  

or = 0.2.  Using the fractionally imputed data in sample B, we estimated three parameters,  1 1= ,E Y  

2  is the slope for the simple regression of 2y  on 1 ,y  and  3 1 2= < 2, < 3 ,P y y  the proportion of 1 < 2y  

and 2 < 3.y  Table 6.2 presents Monte Carlo means and variances of the point estimators for three 

parameters under three different models. In Table 6.2, the absolute values of the difference between the 

fractionally imputed estimator and the full sample estimator increase as the value of   increases, which is 

expected as the instrumental variable assumption is more severely violated for larger values of ,  but the 

differences are relatively small for all cases. In particular, the estimator of 1  is not affected by the departure 

from the instrumental variable assumption. This is because the imputation estimator under the incorrect 

imputation model still provides an unbiased estimator for the population mean as long as the regression 

imputation model contains an intercept term (Kim and Rao 2012). Thus, this limited sensitivity analysis 
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suggests that the proposed method seems to provide comparable estimates when the instrumental variable 

assumption is weakly violated. 

 
Table 6.2 
Monte Carlo means and Monte Carlo variances of the two point estimators for sensitivity analysis in Simulation 
One (Full, full sample estimator; PFI, parametric fractional imputation; HDFI; hot-deck fractional imputation) 
 

Model   Parameter   Method   Mean   Variance  
= 0  1    Full   2.00   0.00235  
     PFI   2.00   0.00352  
    HDFI   2.00   0.00249  

 2    Full   1.00   0.00249 
      PFI   1.00   0.01031  
    HDFI   1.00   0.01026  

  3   Full   0.43   0.00061  
    PFI   0.43   0.00059 
    HDFI   0.43   0.00057  

= 0.1   1   Full   2.00   0.00235  
    PFI   2.00   0.00353  
    HDFI   2.00   0.00250  

  2   Full   1.07   0.00248  
      PFI   1.14   0.01091  
    HDFI   1.14   0.01081 

  3   Full   0.44   0.00061  
    PFI   0.45   0.00062  
    HDFI   0.45   0.00059  

= 0.2   1   Full   2.00   0.00235  
     PFI   2.00   0.00353  
    HDFI   2.00   0.00250  

  2   Full   1.14   0.00250  
     PFI   1.28   0.01115  
    HDFI   1.28   0.01102  

  3   Full   0.44   0.00061  
    PFI   0.46   0.00066  
    HDFI   0.46   0.00062  

 
6.2  Simulation two 
 

In the second simulation study, we consider a binary response variable 2 ,iy  where  

  2 Bernoulli ,i iy p  (6.3) 

   0 1 1logit = ,i ip y    

and  2
1 1 1, .iy N    In the main sample, denoted by ,B  instead of observing  1 2, ,i iy y  we observe 

 2, ,i ix y  where  

 0 1 1= ,i i ix y u    (6.4) 
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and  22
10, .i iu N y   We observe  1, ,i ix y  = 1, , Ai n  in a calibration sample, denoted by A. For 

the simulation, = = 800,A Bn n  0 = 1,  1 = 1,  0 = 0,  1 = 1,  2 = 0.25,  = 0.4,  1 = 0,  and 2
1 = 1.  

Primary interest is in estimation of 1  and testing the null hypothesis that 1 = 1.  The Monte Carlo (MC) 

sample size is 1,000. 

We compare the PFI estimators of 1  to three other estimators. Because the conditional distribution of 

1iy  given ix  is non-standard, we use the weights of (5.3) to implement PFI, where the proposal distribution 

 1
ˆ

a i ih y x  is an estimate of the marginal distribution of 1iy  based on the data from Sample A. We consider 

the following four estimators: 
 

1. PFI: For PFI, the proposal distribution for generating  *
1

j
iy  is a normal distribution with mean 1̂  

and variance 2
1ˆ ,  where 1̂  and 2

1̂  are the maximum likelihood estimates of 1  and 2
1 ,  

respectively, based on Sample A. The fractional weights defined in (5.3) has the form  

                      1 ** 22
1

ˆˆ ˆ1 ,
yy jii

ij ij ij a i iw p p f y x


   (6.5) 

where     1*
0 1 1ˆ ˆˆ = 1 exp j

ij ip y  
    and  1â i if y x  is the estimate of  1i if y x  based on 

maximum likelihood estimation with the Sample A data. The imputation size = 800.m  

2. Naive: A naive estimator is the estimator of the slope in the logistic regression of 2 iy  on ix  for 

.i B  

3. Bayes: We use the approach of Guo and Little (2011) to define a Bayes estimator. The model for 

this simulation differs from the model of Guo and Little (2011) in that the response of interest is 

binary. We implement GIBBS sampling with JAGS (Plummer 2003), specifying diffuse proper 

prior distributions for the parameters of the model. Letting  

                      2 2
1 1 1 0 1 0 1= log , log , , , , , ,          

we assume a priori that  6
1 70,10 ,N I   where 7I  is a 7 7  identity matrix, and the notation 

 0,N V  denotes a normal distribution with mean 0 and covariance matrix .V  The prior 

distribution for the power   is uniform on the interval  5,5 .  

To evaluate convergence, we examine trace plots and potential scale reduction factors defined 

in Gelman, Carlin, Stern and Rubin (2003) for 10 preliminary simulated data sets. We initiate 

three MCMC chains, each of length 1,500 from random starting values and discard the first 500 

iterations as burn-in. The potential scale reduction factors across the 10 simulated data sets range 

from 1.0 to 1.1, and the trace plots indicate that the chains mix well. To reduce computing time, 

we use 1,000 iterations of a single chain for the main simulation, after discarding the first 500 for 

burn-in. 

4. A Weighted Regression Calibration (WRC) estimator. The WRC estimator is a modification of 
the weighted regression calibration estimator defined in Guo and Little (2011) for a binary 
response variable. The computation for the weighted regression calibration estimator involves 
the following steps: 

 

(i) Using ordinary least squares (OLS), regress 1iy  on ix  for the calibration sample.  
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(ii) Regress the logarithm of the squared residuals from step (i) on the logarithm of 2
ix  for the 

calibration sample. Let ̂  denote the estimated slope from the regression.  

(iii) Using weighted least squares (WLS) with weight 
ˆ2 ,ix   regress 1iy  on ix  for the 

calibration sample. Let 0̂  and 1̂  be the estimated intercept and slope, respectively, from 

the WLS regression.  

(iv) For each unit i  in the main sample, let 1 0 1ˆ ˆˆ = .i iy x   

(v) The estimate of  0 1,   is obtained from the logistic regression of 2iy  on 1ˆ iy  in the main 

sample.  

 
Table 6.3 contains the MC bias, variance, and MSE of the four estimators of 1.  The naive estimator has 

a negative bias because ix  is a contaminated version of 1 .iy  The PFI estimator is superior to the Bayes and 

WRC estimators. 

We compute an estimate of the variance of the PFI estimators of 1  using the variance expression based 

on the linear approximation. We define the MC relative bias as the ratio of the difference between the MC 

mean of the variance estimator and the MC variance of the estimator to the MC variance of the estimator. 

The MC relative bias of the variance estimators for PFI is negligible (less than 2% in absolute values). 

 
Table 6.3 
Monte Carlo (MC) means, variances, and mean squared errors (MSE) of point estimators of 1  from 
Simulation Two. (PFI, parametric fractional imputation; WRC, weighted regression calibration; MC, Monte 
Carlo; MSE, mean squared error) 
 

Method   MC Bias   MC Variance   MC MSE  
PFI   0.0239   0.0386   0.0392  

Naive   -0.2241   0.0239   0.0742  
Bayes   0.0406   0.0415   0.0432  
WRC   0.112   0.0499   0.0625  

 
7  Concluding remarks 
 

We approach statistical matching as a missing data problem and propose the PFI method to obtain 

consistent estimators and corresponding variance estimators. Under the assumption that the specified model 

is fully identified, the proposed method provides the pseudo maximum likelihood estimators of the 

parameters in the model. 

A sufficient condition for model identifiability is the existence of an instrumental variable in the model. 

The measurement error framework of Section 5 and Section 6.2, where external calibration provides an 

independent measurement of the true covariate of interest, is a situation in which the study design may be 

judged to support the instrumental variable assumption. The proposed methodology is applicable without 

the instrumental variable assumption, as long as the model is identified. If the model is not identifiable, then 

the EM algorithm for the proposed PFI method does not necessarily converge. In practice, one can treat the 

specified model as identified if the EM sequence converges. That is, as long as the EM sequence converges, 
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the resulting analysis is consistent under the specified model. This is one of the main advantages of using 

the frequentist approach over Bayesian. In the Bayesian approach, it is possible to obtain the posterior values 

even under non-identified models and the resulting analysis can be misleading. 

Testing whether the IV assumption holds in the data at hand is much more difficult, perhaps impossible, 

under the data structure in Table 1.1. Instead, given the specified model, we can only check whether the 

model parameters are fully estimable. On the other hand, whether the specified model is a good model for 

the data at hand is a different story. Model diagnostics and model selection among different identifiable 

models are certainly important future research topics. 

Statistical matching can also be used to evaluate effects of multiple treatments in observational studies. 

By properly applying statistical matching techniques, we can create an augmented data file of potential 

outcomes so that causal inference can be investigated with the augmented data file (Morgan and Winship 

2007). Such extensions will be presented elsewhere. 
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Appendix 
 
A. Asymptotic unbiasedness of 2SLS estimator 
 

Assume that we observe  1 ,y x  in Sample A and observe  2 ,y x  in Sample B. To be more rigorous, 

we can write  1 ,a ay x  to denote the observation  1 ,y x  in Sample A. Also, we can write  2 ,b by x  to denote 

the observations in Sample B. In this case, the model can be written as  

 1 0 1 1 2 2 1

2 0 1 1 2 2 2

= 1

= 1
a a a a a

b b b b b

y x x e

y y x e

  
  

  

  
  

with  1 = 0a aE e x  and  2 1, = 0.b b bE e x y  Note that 1by  is not observed from the sample. Instead, we 

use 1ˆ by  using the OLS estimate obtained from Sample A. 

Writing  = 1 ,a a aX x  and  = 1 , ,b b bX x  we have   1

1 1
ˆˆ = = .b b a a a a b ay X X X X y X    The 2SLS 

estimator of  0 1 2= , ,      is then  
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   1

2SLS 2
ˆ = b b b bZ Z Z y     

where  1 2ˆ= 1 , , .b b b bZ y x  Thus, we have  

 
   

    

1

2SLS 2

1

1 1 1 2

ˆ =

ˆ= .

b b b b b

b b b b b b

Z Z Z y Z

Z Z Z y y e

  







  

   
 (A.1) 

We may write  
 1 0 1 1 1= 1 =b b b b b by x e X e       

where  1 = 0.b bE e x  Since  

 

 
   

 

1

1 1

1

1

1

1

ˆ =

=

= ,

b b a a a a

b a a a a a

b b a a a a

y X X X X y

X X X X X e

X X X X X e











 

  

 

  

we have  

   1

1 1 1 1ˆ =b b b b a a a ay y e X X X X e
     

and (A.1) becomes  

     1 1

2SLS 1 1 1 1 2
ˆ = .b b b b b a a a a bZ Z Z e X X X X e e           (A.2) 

Assume that the two samples are independent. Thus,  1 1, , = 0.b a b aE e x x y  Also, 

  1

2 1 1, , , = 0.b b b b a b a bE Z Z Z e x x y y
   Thus,  

       1 1

2SLS 1 1 1 1
ˆ , , = , ,a b a b b b b a a a a a b aE x x y E Z Z Z X X X X e x x y           

and 

 
          

   

1 1 1 1

1 1

1

=

ˆ= .

b b b b a a a a b b b b a a a a a

b b b b a

Z Z Z X X X X e Z Z Z X X X X y X

Z Z Z X



 

   



        

  
  

This term has zero expectation asymptotically because 1
b b bn Z Z   and 1

b b bn Z X   are bounded in probability 

and  â   converges to zero. 
 

B. Variance estimation  
 

Let the parameter of interest be defined by the solution to    1 2=1
= ; , = 0.

N

N i ii
U U y y   We assume 

that   = 0.NU     Thus, parameter   is priori independent of   which is the parameter in the data-

generating distribution of  1 2, , .x y y  

Under the setup of Section 3, let  1 2
ˆ ˆ ˆ= ,    be the MLE of  1 2= ,    obtained by solving (3.4). Also, 

let ̂  be the solution to  ˆ = 0U    where  

     **
1 2

=1

= ; , ,
m

j
ib ij i i

i B j

U w w U y y  

   
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and  

         * * **
1 1 2 1 2 1

ˆ ˆ; ;j j j
ij i i i i i iw f y x f y y h y x    

with *

=1
= 1.

m

ijj
w  Here,  1h y x  is the proposal distribution of generating imputed values of 1y  in the 

parametric fractional imputation. By introducing the proposal distribution ,h  we can safely ignore the 

dependence of imputed values  *
1

j
iy  on the estimated parameter value 1̂.  

By Taylor linearization,  

            1 1 1 2 2 2
ˆ ˆ ˆU U U U                     

Note that  

     1
1 1 1 1 1 1
ˆ I S       

where    1 1 1 1 1= .I S      Also,  

    
1

2 2 2 2
2

ˆ S S   


     
  

where  

       **
2 2 2 1 2

=1

= ; , .
m

j
i ij i i

i B j

S w w S y y  

   

Thus, we can establish  

        1 1 1 2 2
ˆ ,U U K S K S          

where 1
1 21 11=K D I   and 1

2 22 22=K D I   with  11 1 1= ,I E S       22 2 2= ,I E S      

    
21 1 1=D E U S    and     

22 2 2= ,D E U S    we have  

     1 1
1 2

ˆ =V U V V        

where   = ,E U       

  * *
1 2 2= ,i i i

i B

V V w u K S


  
 
   

 *
1 2 2

ˆˆ= ; , ; ,i i i iu E U y y y     and  2 1 1= .i ii A
V V K w S

  A consistent estimator of each component can 

be developed similarly to Section 3. 
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