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Estimation methods on multiple sampling frames in two-
stage sampling designs 

Guillaume Chauvet and Guylène Tandeau de Marsac1 

Abstract 

When studying a finite population, it is sometimes necessary to select samples from several sampling frames in 
order to represent all individuals. Here we are interested in the scenario where two samples are selected using a 
two-stage design, with common first-stage selection. We apply the Hartley (1962), Bankier (1986) and Kalton 
and Anderson (1986) methods, and we show that these methods can be applied conditional on first-stage 
selection. We also compare the performance of several estimators as part of a simulation study. Our results 
suggest that the estimator should be chosen carefully when there are multiple sampling frames, and that a 
simple estimator is sometimes preferable, even if it uses only part of the information collected. 

 
Key Words: Expansion survey; Hansen-Hurwitz estimator; Horvitz-Thompson estimator; Two-stage sampling. 

 
 

 
 
1  Introduction 

 
When studying a finite population, sometimes no sampling frame covers that population completely, 

and it is necessary to select samples from two or more sampling frames in order to represent all 
individuals. Many methods of estimation on multiple sampling frames have been proposed to pool these 
samples (Hartley 1962; Bankier 1986; Kalton and Anderson 1986; Mecatti 2007; Rao and Wu 2010); see 
also the review articles by Lohr (2009, 2011) and the referenced articles for a complete picture. Note that 
the Mecatti method (2007) is inspired by the work of Lavallée (2002, 2007) on the Generalized Weight 
Share Method. In Section 2, we present different estimation methods for multiple sampling frames. 

In Section 3, we are interested in the scenario where two samples are selected using a two-stage design, 
with common first-stage selection. This framework corresponds to INSEE expansion surveys: an initial 
sample of dwellings is selected from the communes of the master sample (Bourdalle, Christine and Wilms 
2000), and a second sample is selected and surveyed from the communes of the same master sample to 
target a specific subpopulation. We have two survey measurements from two independent samples at the 
second stage of the design. We apply estimation methods to multiple sampling frames to pool these two 
samples. We show that the estimators examined can in this case be calculated conditional on the first stage 
of selection, which simplifies calculation particularly for Hartley’s optimal estimator (1962). In Section 4, 
we compare the performance of these estimators as part of a simulation study. We present our conclusion 
in Section 5. 

mailto:chauvet@ensai.fr
mailto:guylene.tandeau-de-marsac@insee.fr
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2  Estimation for multiple sampling frames 
 

A finite population U  upon which is defined a variable of interest y  of value ky  for individual k  is 
considered. If a sample S  is selected from U  with inclusion probabilities ,kπ  the estimator 

1ˆ = k kk S
Y yπ −

∈∑  proposed by Narain (1951) and Horvitz and Thompson (1952) is unbiased for total 

= kk U
Y y

∈∑  if all probabilities kπ  are strictly positive. 

We are interested in the scenario where the population is fully covered by two overlapping sampling 
frames, AU  and .BU  We used Lohr’s (2011) notation, namely = \A Ba U U  the domain covered by AU  
only; = \B Ab U U  the domain covered by BU  only; = A Bab U U∩  the domain covered both by AU  and 

.BU  A sample AS  is selected in AU  with inclusion probabilities > 0.A
kπ  For any domain ,Ad U⊂  the 

sub-total =d kk d
Y y

∈∑  is unbiasedly estimated by ( )ˆ = 1A A
d k kk SA

Y d y k d
∈

∈∑  with ( ) 1
= .A A

k kd π
−

 A sample 

BU  is selected in BS  with inclusion probabilities > 0.B
kπ  For any domain ,Bd U⊂  the sub-total dY  is 

unbiasedly estimated by ( )ˆ = 1B B
d k kk SB

Y d y k d
∈

∈∑  with ( ) 1
= .B B

k kd π
−

 The objective is to combine the 

samples AS  and BS  to get estimation Y  as accurate as possible. 

 
2.1  Hartley estimator 
 

Hartley (1962) proposes the class of unbiased estimators 

 ( )ˆ ˆ ˆ ˆ ˆ= 1 ,A A B B
a ab ab bY Y Y Y Yθ θ θ+ + − +   (2.1) 

with θ  one parameter to be determined. The choice = 1 2θ  gives samples AS  and BS  the same weight 
for the estimation on the intersection domain .ab  Hartley (1962) proposes choosing the parameter that 
minimizes the variance of ˆ .Yθ  This leads to 

 
( )

( )
ˆ ˆ ˆ ˆ ˆ,

= ,
ˆ ˆ

A B B B A
a ab b ab ab

opt B A
ab ab

Cov Y Y Y Y Y

V Y Y
θ

+ + −

−
  (2.2) 

which can be re-expressed as 

 
( ) ( ) ( )

( ) ( )
ˆ ˆ ˆ ˆ ˆ, ,

=
ˆ ˆ

B B B A A
ab ab b a ab

opt A B
ab ab

V Y Cov Y Y Cov Y Y

V Y V Y
θ

+ −

+
 (2.3) 

when the samples AS  and BS  are independent. As noted by Lohr (2007), the optimal coefficient optθ  may 

not be between 0 and 1 if a covariance term present in (2.3) is large. To simplify, let us assume that 

( )ˆ ˆ, = 0,B B
ab bCov Y Y  which is the case if b  and ab  are used as strata in the selection of .BS  Then > 1optθ  if 

and only if ( )ˆ ˆ, < 0.A A
abCov Y Y  When AS  is selected by simple random sampling, this will be the case, for 

example, if in AU  the low values of the variable y  are concentrated in the domain .ab  

In practice, the variance and covariance terms are unknown and must be replaced by estimators, which 
introduces additional variability. Another disadvantage is that the optimal parameter depends on the 
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variable of interest considered. If optimal estimators are calculated for different variables of interest, 
estimations may be internally inconsistent (Lohr 2011). 

 
2.2  Kalton and Anderson estimator 
 

A more general class of estimators is obtained by noting that total Y  can be re-expressed as 

( )= 1 ,a k k k k b
k ab k ab

Y Y y y Yθ θ
∈ ∈

+ + − +∑ ∑  

with kθ  a coefficient specific to the individual .k  Kalton and Anderson (1986) propose the choice 

( ) 1
= ,A B B

k k k kd d dθ
−

+  which leads to the estimator 

 ˆ =
A B

A A B B
KA k k k k k k

k S k S

Y d m y d m y
∈ ∈

+∑ ∑   (2.4) 

with on one hand = 1A
km  if k a∈  and =A

k km θ  if ,k ab∈  and on the other hand = 1B
km  if k b∈  and 

= 1B
k km θ−  if .k ab∈  The estimation weights are the same regardless of the variable of interest, which 

guarantees internal consistency of the estimations; on the other hand, the Kalton and Anderson estimator 
is less effective than Hartley’s optimal estimator for a given variable of interest. Note that it is a Hansen-
Hurwitz (1943) type estimator, which can be re-expressed as ( )ˆ =  KA k k kk U

Y W E W y
∈
  ∑  noting 

( ) ( )= 1 1A B
kW k S k S∈ + ∈  the number of times when unit k  is selected in the pooled sample .A BS S∪  

In particular this gives ( ) = .A B
k k kE W π π+  

 
2.3  Bankier estimator 
 

Bankier (1986) proposes using a Horvitz-Thompson type estimator, calculating the inclusion 
probabilities in the pooled sample. 

( ) ( )= .HT A B A B A B
k k kP k S S Pr k S Sπ π π≡ ∈ ∪ + − ∈ ∩  

 If the samples AS  and BS  are independent, we get =HT A B A B
k k k k kπ π π π π+ −  and the estimator 

 
( )

1ˆ = = .
A B A B A B

k k k
HT kHT A B A B A B

k S S k S a k S bk k k k k k kk S S ab

y y yY y
π π π π π π π∈ ∪ ∈ ∩ ∈ ∩ ∈ ∪ ∩

+ +
+ −∑ ∑ ∑ ∑   (2.5) 

 
3  Estimation with common first-stage selection 
 

Here we are interested in the case of two samples selected using a two-stage design, with common 
first-stage selection. Population U  is partitioned to obtain a population { }1= , ,I MU u u  of M  primary 
sampling units. In the first stage, a sample IS  of primary sampling units (PSU) is selected, with a 
selection probability Iiπ  for a PSU .iu  In the second stage, in each primary sampling unit ,i Iu S∈  the 
following is selected: a sample A

iS  in ,A
i i Au u U≡ ∩  with a (conditional) selection probability | > 0A

k iπ  for 
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;A
ik u∈  a sample B

iS  in ,B
i i Bu u U≡ ∩  with a (conditional) selection probability | > 0B

k iπ  for unit .B
ik u∈  

We make the following hypotheses, which are common for two-stage selection: the second stage of 
selection in the primary sampling unit iu  depends only on ;i  between two primary sampling units 

,i j Iu u S≠ ∈  the samples A
iS  and A

jS  (respectively, B
iS  and )B

jS  are conditionally independent to IS  

(property of independence). We also assume that within each primary sampling unit ,i Iu S∈  the sub-
samples A

iS  and B
iS  are conditionally independent to .IS  

For a domain 1 ,Ad U⊂  the sub-total 
1dY  is estimated by 

1 1 ,
ˆ ˆ=

i I

A A
d Ii d iu S

Y d Y
∈∑  with ( ) 1=Ii Iid π −  the 

sampling weight of the primary sampling unit ,iu  ( )
1 , | 1

ˆ = 1A
i

A A
d i k i kk S

Y d y k d
∈

∈∑  the estimator of the sub-

total ( )
1 , 1= 1

i
d i kk u

Y y k d
∈

∈∑  over 1 ,id u∩  and ( ) 1

| |=A A
k i k id π

−
 the sampling weight of k  in .A

iu  For a 

domain 2 ,Bd U⊂  the sub-total 
2dY  is estimated by 

2 2 ,
ˆ ˆ=

i I

B B
d Ii d iu S

Y d Y
∈∑  with ( )

2 , | 2
ˆ = 1B

i

B B
d i k i kk S

Y d y k d
∈

∈∑  

the estimator of the sub-total 
2 ,d iY  and ( ) 1

| |=B B
k i k id π

−
 the sampling weight of k  in .B

iu  This yields in 

particular the estimators  

 ( ), , |
ˆ ˆ ˆ=  where = 1 ,

A
i I i

A A A A
ab Ii ab i ab i k i k

u S k S

Y d Y Y d y k ab
∈ ∈

∈∑ ∑   (3.1) 

 ( ), , |
ˆ ˆ ˆ  =   where   = 1 ,    

A
i I i

A A A A
b Ii b i b i k i k

u S k S

Y d Y Y d y k b
∈ ∈

∈∑ ∑   (3.2) 

 ( ), , |
ˆ ˆ ˆ=  where = 1 .

B
i I i

B B B B
ab Ii ab i ab i k i k

u S k S

Y d Y Y d y k ab
∈ ∈

∈∑ ∑   (3.3) 

 
3.1  Hartley estimator 
 

The Hartley estimator given in (2.1) may be re-expressed as 

 ,
ˆ ˆ=

i I

Ii i
u S

Y d Yθ θ
∈
∑   (3.4) 

with ( ), , , , ,
ˆ ˆ ˆ ˆ ˆ= 1A A B B

i a i ab i ab i b iY Y Y Y Yθ θ θ+ + − +  the Hartley estimator of sub-total iY  over unit primary sampling 

unit .iu  We get ( )ˆ | = ,
I

I Ii ii S
E Y S d Yθ ∈∑  then 

 ( ) ( )ˆ ˆ= | .
I

Ii i I
i S

V Y V d Y EV Y Sθ θ
∈

 
+  

 
∑   (3.5) 

In (3.5), the first term of the right member does not depend on .θ  Hartley’s optimal estimator can, 
therefore, be calculated by minimizing the second term only. This gives: 

 
( ) ( ) ( )

( ) ( )|

ˆ ˆ ˆ ˆ ˆ| , | , |
= ,

ˆ ˆ| |I

B B B A A
ab I ab b I a ab I

opt S A B
ab I ab I

EV Y S ECov Y Y S ECov Y Y S

EV Y S EV Y S
θ

+ −

+
  (3.6) 

which can be estimated by   
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( )  ( )  ( )

( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ, ,ˆ =

ˆ ˆ ˆ ˆ

B B B A A
ab ab b a ab

opt A B
ab ab

V Y Cov Y Y Cov Y Y

V Y V Y
θ

+ −

+
  (3.7) 

by replacing each variance and covariance term with an unbiased estimator conditional on the first stage. 

 
3.2  Kalton and Anderson estimator 
 

With the sample design considered, we get |=A A
k Ii k id d d  for any unit ,A

ik u∈  and |=B B
k Ii k id d d  for any 

unit .B
ik u∈  Therefore, the Kalton and Anderson estimator given in (2.4) can be re-expressed as 

 ,
ˆ ˆ=

I

KA Ii KA i
i S

Y d Y
∈
∑   (3.8) 

with , | | | |
ˆ = A B

A A B B
KA i k i k i k k i k i kk S k S

Y d m y d m y
∈ ∈

+∑ ∑  the Kalton and Anderson estimator of the sub-total ,iY  where 

| || |

| | | |

1 if , 1 if ,
=    and   =

if , if .

i i
B AA B
k i k ik i k i

i iA B A B
k i k i k i k i

k a u k b u
d dm m

k ab u k ab u
d d d d

∈ ∩ ∈ ∩ 
 
 ∈ ∩ ∈ ∩ + + 

 

 
3.3  Bankier estimator 
 

With the sampling design considered, we get ( )| | | |=HT A B A B
k Ii k i k i k i k iπ π π π π π+ −  for any .ik u∈  Therefore, 

the Bankier estimator given in (2.5) can be re-expressed as 

 ,
ˆ ˆ=

I

HT Ii HT i
i S

Y d Y
∈
∑   (3.9) 

with ( ), |
ˆ = A B

i i

HT
HT i k k ik S S

Y y π
∈ ∪∑  the Bankier estimator for the sub-total ,iY  and | |=HT A

k i k iπ π  if ,k a∈  

| |=HT B
k i k iπ π  if ,k b∈  | | | | |=HT A B A B

k i k i k i k i k iπ π π π π+ −  if .k ab∈  

Each of the three estimators examined is obtained by applying the estimation method PSU by PSU, 
conditional on the first stage. This result is particularly attractive for Hartley’s optimal method, since the 
optimal coefficient estimator given in (3.7) only requires variance estimators conditional on the first stage. 

 
4  Simulation study 
 

We are using artificial populations proposed by Saigo (2010). We generate two populations, each 
containing = 200M  primary sampling units grouped in = 4H  strata IhU  of size = 50.hM  Each primary 
sampling unit hiu  contains = 100hiN  secondary units. In each population, we generate for each primary 
sampling unit :hi Ihu U∈  

 =hi h h hivµ µ σ+   (4.1) 
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where the values hµ  and hσ  are those used by Saigo (2010). The term 2
hσ  makes it possible to control 

dispersion between the primary sampling units. The hiv  are iid, generated according to a standard normal 
distribution (0,1).N  For each unit ,hik u∈  we then generate the value ky  according to the model 

 ( ){ }0.51= 1 ,k hi h ky vµ ρ ρ σ−+ −   (4.2) 

where the kv  are iid, generated according to standard normal distribution. The variance term in the model 
(4.2) can give an intra-cluster correlation coefficient approximately equal to .ρ  In particular, the larger 
the ρ  coefficient, the less the values ky  are dispersed in the primary sampling units. We use = 0.2ρ  for 
population 1 and = 0.5ρ  for population 2, which reflects less dispersion of the variable y  in population 
2. The sampling frame AU  corresponds to all secondary units, and the corresponding part of hiu  is 

= ,A
hi hiu u  of size = .A

hi hiN N  For each secondary unit ,k  a value ku  is generated according to uniform 
distribution over [ ]0,1 .  The sampling frame BU  corresponds to the secondary units k  such that 0.5,ku ≤  

and the corresponding part of hiu  is =B
hi hi Bu u U∩  of size .B

hiN  This gives, therefore, the situation where 
= Bab U  and = .b ∅  The framework selected in the simulations is the one used in the INSEE household 

surveys, with expansion to target a specific sub-population. For these surveys, a sample IS  of communes 
(or groups of communes) is first selected in the first stage. A sub-sample A

iS  of dwellings is then selected 
in each ;i Iu S∈  the pooled sample =

i I

A A
iu S

S S
∈

 represents the entire population of dwellings = .AU U  

A second sub-sample B
iS  of dwellings is then selected from within a sub-population of each ,i Iu S∈  in 

order to target a specific sub-population BU  (for example, dwellings located in a Sensitive Urban Area); 
the pooled sample =

i I

B B
iu S

S S
∈

 represents only the targeted sub-population .BU  

In each of the two populations created, several samplings are taken concurrently; Table 4.1 presents for 
each population the eight possible combinations of sample sizes per stratum in the first and second stage, 
as well as the values hµ  and .hσ  In the first stage, we select independently in each stratum :IhU  either a 
sample IhS  of = 5hm  primary sampling units by simple random sampling; or a sample IhS  of = 25hm  
primary sampling units by simple random sampling. In the second stage, we select in each :hi Ihu S∈  
either a sample A

hiS  of size = 10A
hin  by simple random sampling in ;A

hiu  or a sample A
hiS  of size = 40A

hin  
by simple random sampling in .A

hiu  In the second stage, we also select in each :hi Ihu S∈  either a sample 
B
hiS  of size = 5B

hin  by simple random sampling in ;B
hiu  or a sample B

hiS  of size = 20B
hin  by simple random 

sampling in .B
hiu  Also we note ( ) 1

=A A A
hi hi hif N n

−
 and ( ) 1

=B B B
hi hi hif N n

−
 the sampling rates in A

hiu  and .B
hiu  

 
Table 4.1 
Parameters used in each stratum to generate both populations and select samples 
 

  Sample Sizes   Parameters  
  per Stratum   Stratum 1   Stratum 2   Stratum 3   Stratum 4  
  hm    A

hin    B
hin    hµ    hσ    hµ    hσ    hµ    hσ    hµ    hσ   

Population 1   5 or 25  10 or 40   5 or 20  200  20  150  15   120  12  100  10  

Population 2   5 or 25  10 or 40  5 or 20  200  10  150   7.5   120  6  100   5  
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For each sample, Hartley’s estimator given in (3.4) is calculated with either = 1 2θ  (HART1), or for 
value of θ  the optimal coefficient estimator given in (3.7) (HART2), with 

( ) ( ) ( ) ( ){ }
2

22

;
=1

1ˆ ˆ = 1 ,
1

A
hiA

hi Ih hi

AH
A Ah hi

ab hi k ab SA A
h u S k Sh hi hi

M fV Y N y k ab y
m n n∈ ∈

  −
∈ − 

− 
∑ ∑ ∑  

( ) ( ) ( ) ( ){ }
2

22

;
=1

1ˆ ˆ = 1 ,
1  

B
hiB

hi Ih hi

BH
B Bh hi

ab hi k ab SB B
h u S k Sh hi hi

M fV Y N y k ab y
m n n∈ ∈

  −
∈ − 

− 
∑ ∑ ∑  

 ( ) ( ) ( ) ( ){ } ( ){ }
2

2

; ;
=1

1ˆ ˆ, = 1 1 ,
1

A A
hi hiA

hi Ih hi

AH
A A Ah hi

a ab hi k ka S ab SA A
h u S k Sh hi hi

M fCov Y Y N y k a y y k ab y
m n n∈ ∈

  −
∈ − ∈ − 

− 
∑ ∑ ∑  

noting ;d Vy  the average of variable ( )1ky k d∈  on a subset .V U⊂  For each sample, the Kalton and 

Anderson estimator (KALT) given in (3.8) is also calculated, as well as the Bankier estimator (BANK) 
given in (3.9), and the Horvitz-Thompson estimator ˆ AY  based on the single sample AS  (HTA). The 
sampling procedure is repeated 10,000 times. To measure the bias of an estimator ˆ,Y  we calculate its 
relative Monte Carlo bias 

( ) ( )ˆ
ˆ = 100

MC
MC

E Y Y
RB Y

Y

−
×  

with ( ) ( ) 10,000
( )=1

ˆ ˆ= 1 10,000 ,MC bb
E Y Y∑  and ( )

ˆ
bY  the value of estimator Ŷ  for sample .b  To measure the 

variability of ˆ,Y  we calculate its Monte Carlo mean square error 

( ) ( )
10,000 2

( )
=1

1ˆ ˆ= .
10,000MC b

b
MSE Y Y Y−∑  

The results are given in Table 4.2. As emphasized by a referee, the performances of the HTA estimator 
do not depend on the sample size B

hin  chosen. For consistency, Table 4.2 indicates the results obtained in 
the simulations with = 5B

hin  only. For identical sample sizes hm  and identical ,A
hin  the same results are 

reported in the case = 20.B
hin  

All estimators are virtually unbiased. The HART2 estimator gives better results in terms of mean 
squared error, as could be expected. The HTA estimator gives almost equivalent results. This result is 
explained by the fact that the optimal coefficient is near 1 (in the simulations, ôptθ  is between 0.80  and 
1.06),  and that in this case, the formula (2.1) shows that the HART2 and HTA estimators are very close: 

In the appendix we present some general conditions under which this property is approximately checked. 
Of the three estimators, HART1 yields the best results, with a mean square error lower than or equivalent 
to that of KALT and BANK in 11 out of 16 cases. 
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Table 4.2 
Relative bias and mean squared error of five estimators 
 

        HART1   HART2   KALT   BANK   HTA  
Pop.   hm    A

hin    B
hin    RB   MSE   RB   MSE   RB   MSE   RB   MSE   RB   MSE  

        ( % )   910×    ( % )   910×    ( % )   910×    ( % )   910×    ( % )   910×   
1  5   10   5   0.05   7.76   0.01    5.70   0.05    7.79   0.06   8.56   0.04    5.75 
1  5   10   20   0.01   7.57   -0.05    5.57   0.03    11.36   0.04   12.75   0.04    5.75 
1  5   40   5   0.01   5.01   -0.02    4.51    -0.02    4.57  -0.02    4.81  -0.02   4.52 
1  5   40   20   0.00   4.65   -0.01     4.33   0.00    4.66   0.00    5.22   -0.02    4.52 
1  25   10   5   -0.03   1.19   -0.02    0.78     -0.03    1.20  -0.02    1.34  -0.01      0.78 
1  25   10   20   -0.01   1.17   0.00    0.78     -0.03    1.94  -0.03    2.22   -0.01      0.78 
1  25   40   5   0.00    0.62   0.01    0.51   0.00    0.52   0.00    0.57   0.01    0.51 
1  25   40   20   0.02   0.58   0.01    0.51   0.02    0.58   0.02    0.68   0.01    0.51 
              2  5   10   5   0.00    3.59   0.01    1.15   0.00    3.56   0.02    4.38   0.01    1.15 
2  5   10   20   0.00    3.60   -0.02    1.15  0.00    7.38   0.00    8.76   0.01    1.15 
2  5   40   5   0.00    1.48   0.01    1.07   0.00    1.13  0.01     1.35  0.01    1.07 
2  5   40   20   0.00    1.49  -0.01      1.09  0.00    1.49  0.00    2.03   0.01    1.07 
2  25   10   5   0.00    0.63   0.00    0.14   0.00    0.63   0.00    0.78   0.00    0.14 
2  25   10   20   0.00    0.62   0.00    0.13   0.00    1.38  0.00    1.67  0.00    0.14 
2  25   40   5   0.00    0.20   0.00    0.12   0.00    0.13   0.00    0.18   0.00    0.12 
2  25   40   20   0.00     0.20    0.00     0.12   0.00     0.20   0.01   0.31   0.00   0.12 

 

For each estimator, all other things being equal, the mean square error is lower in population 2 than in 
population 1. This result comes from the fact that the variance due to the first-stage selection, which is the 
same for each estimator and is 

 2 2
;

=1

1 1= ,
Ih

I

H

Ii i h Y U
i S h h h

V d Y M S
m M∈

   
−       

∑ ∑   (4.3) 

is larger in population 1: the dispersion term ( ) ( )212
; = 1

Ih Ihi Ih
Y U h i Uu U

S M Y Y−

∈
− −∑  increases with 2

hσ  and, 

to a lesser degree, increases when ρ  decreases. The mean square error decreases for each estimator when 
the number hm  of primary sampling units selected in each stratum increases, since in this case the 

common variance term given in (4.3) decreases. Similarly, the mean square error decreases for each 
estimator when An  increases, since in this case the variance due to the second stage of selection decreases. 
For the HART1 and HART2 estimators, the mean square error is stable when Bn  increases, and more 
surprisingly for the KALT and BANK estimators the mean square error increases when Bn  increases. This 
somewhat counterintuitive result is due to the convergence of two facts. On one hand, the contribution of 
sample BS  to the variance due to the second stage of selection is low: the increase of Bn  may reduce this 
variance, but even in this case, overall reduction of the variance is marginal. On the other hand, with the 
KALT and BANK estimators, the contribution of sample AS  to the variance due to the second stage of 
selection increases when Bn  increases. 

In the case of KALT, the estimator can be re-expressed 

,
=1

ˆ ˆ=
Ih

H
h

KA KA i
h i Sh

MY Y
m ∈

∑ ∑  
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In (4.4), the dispersion of the variable |
A
k im  (and therefore, that of |  )A

k i km y  increases when the factor 

( )A A B
hi hi hif f f+  moves away from 1.  This factor is near 1 when B

hif  is small compared to A
hif  (and 

therefore, if Bn  is small compared to ),An  but moves away from 1 when Bn  increases. Note that the 
variance (conditional on )IS  of the second term of ,K̂A iY  is equal to   

( ) ( )
( )

2 2
2

1 = B
hiB

i

B B B
hi hi hiA B

k I hi hiA B uB A A B
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with ( ) ( )212 = 1 .B BB
hi hihi

B
hi ku uk u

S N y y
−

∈
− −∑  This variance does not necessarily decrease when B

hin  increases. 

For example, one of the cases considered in the simulations corresponds to = 100,A
hiN  50B

hiN   and 

= 40.A
hin  In this case, the term ( ) ( )2B B B B A A B

hi hi hi hi hi hi hin N n N n N n− +  attains its maximum value for = 11.B
hin  

In the case of BANK, the estimator can be re-expressed 

,
=1

ˆ ˆ=
Ih

H
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In (4.5), dispersion of the variable |
HT
k iπ  increases when the factor ( )1B A

hi hif f−  increases. This factor is 

close to 0  when B
hin  (and, therefore, )B

hif  is low, but increases when B
hin  increases. 

 
5  Conclusion 
 

We examined the Hartley (1962), Kalton and Anderson (1986) and Bankier (1986) estimators to pool 
the samples resulting from two survey waves. More particularly, we studied the case where the first 
sample represents the entire population (completely representative sample), while the second represents 
only a part (partially representative sample). Within the framework considered in the simulations (also see 
the Appendix for a more general framework), using the partially representative sample did not improve 
accuracy: if its size increases, the accuracy of the estimators in the Hartley class remains stable or 
improves slightly, while the accuracy of the Kalton and Anderson and Bankier estimators is worsened. 
Hartley’s optimal estimator itself, although more complex to calculate, offers accuracy that is only slightly 
improved as compared to the classic Horvitz-Thompson estimator calculated on the fully representative 
sample. Although our simulation study is limited, the results suggest that the estimator should be chosen 
carefully when there are multiple survey frames, and that a simple estimator is sometimes preferable, even 
if it uses only part of the information collected. 
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Appendix 
 

A1.  Comparison of Hartley’s optimal estimator and the Horvitz-Thompson 
estimator 
 

Let us take the framework and notations from Section 4: samples AS  and BS  are selected using a two-
stage frame with common first stage selection. Stratified simple random sampling is used at the first stage, 
and simple random sampling in each primary sampling unit at the second stage. The sampling frame AU  
corresponds to the entire population, while the sampling frame BU  covers only part of the population. 

With Hartley’s optimal estimator, the formula (3.6) gives 
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( ) ( )|

ˆ ˆ ˆ| , |
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B A A
ab I a ab I
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After some calculation, we get  
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The Horvitz-Thompson estimator based on the single sample AS  and Hartley’s optimal estimator agree 
if the coefficient | Iopt Sθ  is equal to 1,  which is the case if ( ) ( )ˆ ˆ ˆ| = , | .A A A

ab I a ab IEV Y S ECov Y Y S−  This 

condition will be verified in particular if in (A.1) the terms between the brackets agree for each primary 
sampling unit .hiu  We get therefore | 1

Iopt Sθ   if 
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B B
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  (A.2) 

Let us suppose that the mean value of y  is approximately the same in the frames AU  and BU  for each 
primary sampling unit, i.e. that  hi Iu U∀ ∈  .B hihi

uu
y y  Then, the condition (A.2) will be verified 

approximately if  hi Iu U∀ ∈  2
B
hiu

cv  is close to 0 , with 2= .B B B
hi hi hiu u u

cv S y  
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In summary, the Horvitz-Thompson estimator based on the single sample AS  and Hartley’s optimal 
estimator will be close if within each primary sampling unit :hiu  (a) there is not much difference in the 
mean value of y  between the two bases, and (b) the variable y  has low dispersion within .B

hiu  In the 
simulations, the condition (a) is approximately met since the distribution of individuals between the 
sampling frames AU  and BU  is completely random; the condition (b) is approximately met with values of 

2
B
hiu

cv  varying from 0.02  to 0.10  for population 1, and from 0.001  to 0.005  for population 2. 
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