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The calibration approach in survey theory and practice

Carl-Erik Séarndal !

Abstract

Calibration is the principal theme in many recent articles on estimation in survey sampling. Words such as “calibration
approach” and “calibration estimators” are frequently used. As article authors like to point out, calibration provides a
systematic way to incorporate auxiliary information in the procedure.

Calibration has established itself as an important methodological instrument in large-scale production of statistics. Several
national statistical agencies have developed software designed to compute weights, usually calibrated to auxiliary
information available in administrative registers and other accurate sources.

This paper presents a review of the calibration approach, with an emphasis on progress achieved in the past decade or so.
The literature on calibration is growing rapidly; selected issues are discussed in this paper.

The paper starts with a definition of the calibration approach. Its important features are reviewed. The calibration approach
is contrasted with (generalized) regression estimation, which is an alternative but conceptually different way to take
auxiliary information into account. The computational aspects of calibration are discussed, including methods for avoiding
extreme weights. In the early sections of the paper, simple applications of calibration are examined: The estimation of a
population total in direct, single phase sampling. Generalization to more complex parameters and more complex sampling
designs are then considered. A common feature of more complex designs (sampling in two or more phases or stages) is that
the available auxiliary information may consist of several components or layers. The uses of calibration in such cases of
composite information are reviewed. Later in the paper, examples are given to illustrate how the results of the calibration
thinking may contrast with answers given by earlier established approaches. Finally, applications of calibration in the
presence of nonsampling error are discussed, in particular methods for nonresponse bias adjustment.

Key Words: Auxiliary information; Weighting; Consistency; Design-based inference; Regression estimator; Models;
Nonresponse; Complex sampling design.

1. Introduction quantitative, on which one wishes to carry out, jointly, an
adjustment.

Kott (2006) defines calibration weights as a set of
weights, for units in the sample, that satisfy a calibration to
known population totals, and such that the resulting
estimator is randomization consistent (design consistent), or,
more rigorously, that the design bias is, under mild
conditions, an asymptotically insignificant contribution to
the estimator’s mean squared error. This is the property I
call “nearly design unbiased”.

The Quality Guidelines (fourth edition) of Statistics
Canada (2003) say: “Calibration is a procedure than can be
used to incorporate auxiliary data. This procedure adjusts
the sampling weights by multipliers known as calibration
factors that make the estimates agree with known totals. The
resulting weights are called calibration weights or final
estimation weights. These calibration weights will generally

1.1 Calibration defined

It is useful in this paper to refer to a definition of the
calibration approach. I propose the following formulation.

Definition. The calibration approach to estimation for finite
populations consists of

(a) a computation of weights that incorporate specified
auxiliary information and are restrained by
calibration equation(s),

(b) the use of these weights to compute linearly
weighted estimates of totals and other finite
population parameters: weight times variable value,
summed over a set of observed units,

(¢ an objective to obtain nearly design unbiased

estimates as long as nonresponse and other non-
sampling errors are absent.

In the literature, “calibration” frequently refers to (a)
alone; I shall often use the term for (a) to (c) together.
Earlier definitions, although less extensive, agree essentially
with mine. Ardilly (2006) defines calibration (or, more
precisely, “calage généralisé”) as a method of re-weighting
used when one has access to several variables, qualitative or

result in estimates that are design consistent, and that have a
smaller variance than the Horvitz-Thompson estimator.”
Part (c) of the definition merits a comment. Nothing
prevents producing weights calibrated to given auxiliary
information without requiring (c). But most published work
on calibration is in the spirit of (c), so it makes good sense to
include it. When non-sampling errors are present, bias in the
estimates is unavoidable, whether they are made by
calibration or by any other method. In line with (c), I
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consider design-based inference to be the standard in this
paper. The randomization-based variance of an estimator is
thus important. However, the paper focuses on “motivations
behind (point) estimation”; for reasons of space, the
important question of variance estimation is not addressed.

1.2 Comments arising

The definition in Section 1.1 prompts some comments
and references to earlier literature:

(1) Calibration as a linear weighting method. Calibration
has an intimate link to practice. The fixation on weighting
methods on the part of the leading national statistical
agencies is a powerful driving force behind calibration. To
assign an appropriate weight to an observed variable value,
and to sum the weighted variable values to form appropriate
aggregates, is firmly rooted procedure. It is used in
statistical agencies for estimating various descriptive finite
population parameters: totals, means, and functions of totals.
Weighting is easy to explain to users and other stakeholders
of the statistical agencies.

Weighting of units by the inverse of their inclusion
probability found firm scientific backing long ago in papers
such as Hansen and Hurwitz (1943), Horwitz and
Thompson (1952). Weighting became widely accepted.
Later, post-stratification weighting achieved the same status.
Calibration weighting extends both of these ideas.
Calibration weighting is outcome dependent; the weights
depend on the observed sample.

Inverse inclusion probability weights are, by definition,
greater than or equal to unity. A commonly heard
interpretation is that “an observed unit represents itself and a
number of others, not observed”. Calibrated weights, on the
other hand, are not necessarily greater than or equal to unity,
unless special care is taken in the computation to obtain this
property.

Calibration is new as a term in survey sampling - about
15 years old - but not as a technique for producing weights.
Those who maintain “I practiced calibration long before it
was called calibration” have a point. The last 15 years
widened the scope and the appeal of the technique.
Weighting akin to calibration has long been used by private
survey institutes, for example, in connection with quota
sampling, a form of non-probability sampling outside the
scope of this paper.

Weighting of observed variable values was an important
topic before calibration became a popular term. Some
authors derived the weights via the argument that they
should differ as little as possible from the unbiased sampling
design weights (the inverse of the inclusion probabilities).
Others found the weights by recognizing that a linear
regression estimator can be written as a linearly weighted
sum of the observed study variable values. Terms such as
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“survey sample weighting” and “regression weighting” and
“case weighting” are used. Among such “early papers” are
Alexander (1987), Bankier, Rathwell and Majkowski
(1992), Bethlehem and Keller (1987), Chambers (1996),
Fuller, Loughin and Baker (1994), Kalton and Flores-
Cervantes (1998), Lemaitre and Dufour (1987), Sérndal
(1982) and Zieschang (1990). I comment later on the
technique “repeated weighting”, promoted by the Dutch
national statistical agency, CBS. The newer term
“calibration” conveys a more specific message and a more
definite direction than the older “weighting”.

(2) Calibration as a systematic way to use auxiliary
information. Calibration provides a systematic way to take
auxiliary information into account. As Rueda, Martinez,
Martinez and Arcos (2007) point out, “in many standard
settings, the calibration provides a simple and practical
approach to incorporating auxiliary information into the
estimation”.

Auxiliary information was used to improve the accuracy
of survey estimates long before calibration became popular.
Numerous papers were written with this goal in mind, for
more or less specialized situations. Today, calibration does
offer a systematic outlook on the uses of auxiliary
information. For example, calibration can deal effectively
with surveys where auxiliary information exists at different
levels. In two-stage sampling information may exist for the
first stage sampling units (the clusters), and other
information for the second stage sampling units. In surveys
with nonresponse (that is, essentially all surveys), infor-
mation may exist “at the population level” (known
population totals), and other information “at the sample
level” (auxiliary variable values for all those sampled,
responding and non-responding). Calibration with
“composite information” is reviewed in Sections 8 and 9.

Regression estimation, or generalized regression (GREG)
estimation, competes with calibration as a systematic way to
incorporating auxiliary information. It is therefore important
to contrast GREG estimation (described in Section 3) with
calibration estimation (described in Section 4). The two
approaches are different.

(3) Calibration to achieve consistency. Calibration is often
described as “a way to get consistent estimates”. (Here
“consistent” refers not to “randomization consistent” but to
“consistent with known aggregates”.) The calibration
equations impose consistency on the weight system, so that,
when applied to the auxiliary variables, it will confirm (be
consistent with) known aggregates for those same auxiliary
variables. A desire to promote credibility in published
statistics is an often cited reason for demanding consistency.
Some users of statistics dislike finding the same population
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quantity estimated by two or more numbers that do not
agree.

The totals with which consistency is sought are
sometimes called control totals. “Controlled weights” or
“calibrated weights” suggest improved, more accurate
estimation. The French term for calibration, “calage”, has a
similar connotation of “stability”.

Consistency through calibration has a broader implica-
tion than just agreement with known population auxiliary
totals. Consistency can, for example, be sought with
appropriately estimated totals, arising in the current survey
or in other surveys.

Consistency among tables estimated from different
surveys is the motive behind repeated weighting, the
technique developed at the Dutch national statistical agency
CBS in several articles: Renssen and Nieuwenbroek (1997);
Nieuwenbroek, Renssen, and Hofman (2000); Renssen,
Kroese, and Willeboordse (2001); Knottnerus and van Duin
(2006). The stated objective is to accommodate user
demands to produce numerically consistent outputs. As the
last mentioned paper points out, repeated weighting can be
seen as an additional calibration step for a new adjustment
of already calibrated weights. The final weights realize
consistency with given margins.

Consistency with known or estimated totals may bring
the extra benefit of improved accuracy (lower variance
and/or reduced nonresponse bias). However, in some
articles, especially those authored in statistical agencies,
consistency for user satisfaction seems a more imperative
motivation than the prospect of increased accuracy.

When the primary motivation for calibration is not so
much an agreement with other statistics as rather to reduce
variance and/or nonresponse bias, then “balanced weight
system” is a more appropriate description than “consistent
weight system”, because the objective is then to balance the
weights to reflect the outcome of the sampling, the response
to the survey, and the information available.

(4) Calibration for convenience and transparency. As
Harms and Duchesne (2006) point out, “The calibration
approach has gained popularity in real applications because
the resulting estimates are easy to interpret and to motivate,
relying, as they do, on design weights and natural
calibration constraints.” Calibration on known totals strikes
the typical user as transparent and natural. Users who
understand sample weighting appreciate that calibration
leaves the design weights “slightly modified only”, while
respecting the controls. The unbiasedness is only negligibly
disturbed. The simpler forms of calibration invoke no
assumptions, only “natural constraints”. Yet another
advantage is appreciated by users: In many applications,
calibration gives a unique weighting system, applicable to
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all study variables, of which there are usually many in large
government surveys.

(5) Calibration in combination with other terms. Some
authors use the word “calibration” in combination with
other terms, to describe various directions of thought.
Examples of this proliferation of terms are: Model-
calibration (Wu and Sitter 2001); g-calibration
(Vanderhoeft, Waeytens and Museux 2000); Harmonized
calibration (Webber, Latouche and Rancourt 2000), Higher
level calibration (Singh, Horn and Yu 1998); Regression
calibration (Demnati and Rao 2004); Non-linear calibration
(Plikusas 2006); Super generalized calibration (Calage super
généralisé; Ardilly 2006); Neural network model-calibration
estimator and Local polynomial model-calibration estimator
(Montanari and Ranalli 2003, 2005), Model-calibrated
pseudo empirical maximum likelihood estimator (Wu
2003), and yet others. Also, calibration plays a significant
role in the indirect sampling methods proposed in Lavalleé
(2006). In a somewhat different spirit, not reviewed here,
are concepts such as calibrated imputation (Beaumont
2005a), and bias calibration (Chambers, Dorfman and
Wehrly (1993), Zheng and Little (2003)). The following
review pages do not give justice to all the innovations within
the sphere of calibration, but the names alone do suggest
directions that have been explored.

(6) Calibration as a new direction for thought. If
calibration represents “a new approach” with clear
differences compared with predecessors, we must examine
such questions as: Does calibration generalize earlier
theories or approaches? Does calibration give better, more
satisfactory answers on questions of importance, as
compared with earlier recognized approaches? Sections 4.5
and 7.1 in this paper illustrate how the answers provided by
calibration compare with, or contrast with, those obtained in
earlier modes of reasoning.

The practice of survey sampling encounters “nuisances”
such as nonresponse, frame deficiencies and measurement
errors. It is true that imputation and reweighing for non-
response are widely practiced, through a host of techniques.
But they are somehow “separate issues”, still waiting to be
more fully embedded into a comprehensive, more
satisfactory theory of inference in sample surveys. Many
theory papers deal with estimation for an imagined ideal
survey, nonexistent in practice, where nonresponse and
other non-sampling errors are absent. This is not a criticism
of the many excellent but idealized theory papers. The
foundations need to be explored, too.

Sections 9 and 10 indicate that calibration can provide a
more systematic outlook on inference in surveys even in the
presence of the various non-sampling errors. Future fruitful
developments are expected in that regard.

Statistics Canada, Catalogue No. 12-001-X
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2. Basic conditions for design-based estimation
in sample surveys

This section sets the background for Sections 3 to 7. By
“basic conditions” I will mean single phase probability
sampling of elements and full response. In practice, survey
conditions are not that simple and perfect, but many theory
papers nevertheless address this situation.

A probability sample s is drawn from the finite
population U ={1, 2, ..., k, ..., N}. The probability sampling
design generates for element k& a known inclusion
probability, w, >0, and a corresponding sampling design
weight d, =1/n,. The value y, of the study variable y is
recorded for all £ es (complete response). The objective is
to estimate a population total ¥ =3, v, with the use of
auxiliary information. The study variable y may be
continuous or, as in many government surveys, categorical.
For example, if y is dichotomous with value y, =0 or
v, =1 according as person k is employed or unemployed,
then the parameter Y =3%,y, to be estimated is the
population count of unemployed people. (If A c U is a set
of elements, I write >, for >,.,) The basic design
unbiased estimator of Y is Y, =Y. d,y,, the Horwitz-
Thompson estimator. It is, however, inefficient when
powerful auxiliary information is available for use at the
estimation phase.

The general notation for the auxiliary vector will be x,.
In some countries, for some surveys, the sources of auxiliary
data permit extensive vectors X, to be built. But some
examples of simple vectors are: (1) x, =(1, x,)’, where x,
is the value for element & of a continuous auxiliary variable
x; (2) the classification vector used to code membership in
one of P mutually exclusive and exhaustive groups,
X, =Y = Vg ooes Y pho o0 Ype)s sothat, for p=1,2,..., P,
Y« =1 if k belongs to group p, and v,, =0 if not; (3) the
combination of (1) and (2), x, = (v}, x,v;)"; (4) the vector
x, that codifies two classifications stringed out ‘side-by-
side’, the dimension of x, being P+ QO — 1, where P and Q
are the respective number of categories, and the ‘minus-one’
is to avoid a singular matrix in the computation of weights
calibrated “to the margins”; (5) the extension of (4) to more
than two ‘side-by-side’ categorical classifications. Cases 4
and 5 are particularly important for production in national
statistical agencies.

In calibration reasoning it is crucially important to
specify exactly the auxiliary information. Under the basic
conditions we need to distinguish two different cases
relative to X,:

(1) x, is a known vector value for every keU
(complete auxiliary information)

(i) >uX, is known (imported) total, and x, is known
(observed) for every k e s
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It is often the survey environment that dictates whether
(1) or (ii) prevails. Case (i), complete auxiliary information,
occurs when x, is specified in the sampling frame for every
k e U (and thus known for every k e s ). This environment
is typical of surveys on individuals and households in
Scandinavia and other North European countries equipped
with high quality administrative registers that can be
matched with the frame to provide a large number of
potential auxiliary variables. The population total Y, x, is
obtained simply by adding the x,.

Case (i) gives considerable freedom in structuring the
auxiliary vector x,. For example, if x, is a continuous
variable value specified for every keU, then we are
invited to consider x; and other functions of x, for
inclusion in x,, because totals such as ¥,x; and
Y logx, are readily computed. If the relationship to the
study variable y is curved, it may be a serious omission not
to take into account known totals such as the quadratic one
or the logarithmic one.

Case (ii) prevails in surveys where (i) is not met, but
where Y, x, is imported from an outside source
considered accurate enough, and the individual value x,
is available (observed in data collection) for every k €.
Then Y, x, is sometimes called an “independent control
total”, to mark its origin from outside the survey itself.
Case (i) is less flexible: If x, is a variable with a total
Y x, imported from a reliable source, then Y, x; may
be unavailable, barring x; from inclusion into x, .

3. Generalized regression estimation under
the basic conditions

3.1 The GREG concept

Before examining calibration, let us consider generalized
regression (GREG) estimation (or just regression
estimation), for two good reasons: (1) GREG estimation can
also be claimed to be a systematic way to take auxiliary
information into account; (2) some (but not all) GREG
estimators are calibration estimators, in that they can be
expressed in terms of a calibrated linear weighting.

GREG estimators and calibration estimators have been
extensively studied in the last two decades. The terms alone,
“GREG estimation” and “calibration estimation”, reflect a
clear difference in thinking. Statisticians who work in the
area are of two types: Those dedicated to “GREG thinking”
and those dedicated to “calibration thinking”. The
distinction may not be completely clear-cut, but it helps
structuring this review paper, so I will use it. I am not
venturing to say that the latter thinking is more prevalent in
national statistical agencies and the former more prevalent
in the academic circles, but perhaps there is such a tendency.
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The GREG estimator concept evolved gradually since
the mid-1970’s. The simple (linear) GREG is explained in
Séarndal, Swensson and Wretman (1992); a thorough review
of regression estimation is given in Fuller (2002). The
central idea is that predicted y-values 7, can be produced
for all N population elements, via the fit of an assisting
model and the use of the auxiliary vector values x, known
for all k£ e U. The predicted values serve to build a nearly
design unbiased estimator of the population total ¥ =3, y,
as

?GREG :zUﬁk +stk(yk =)
SIKARI OIS IAN

The obvious motivation behind this construction is the
prospect of a highly accurate estimate Y, through a
close fitting assisting model that leaves small residuals
¥, — ;. That modeling is the corner stone of GREG
thinking. Some authors use the (also justifiable) name
general difference estimator for the construction (3.1).

The great variety of possible assisting models generates a
wide family of GREG estimators of the form (3.1). The
assisting model, an imagined relationship between x and y,
can have many forms: linear, non-linear, generalized linear,
mixed (model with some fixed, some random effects), and
so on. Whatever the choice, the model is “assisting only”
even though it may be short of “true”, (3.1) is nearly deign
unbiased under mild conditions on the assisting model and
on the sampling design, so that (Y,gp —Y)/ N = O (n™"?)
and (Yreg =¥)/ N = Vorec.im = Y)/ N +0,(n” ) where
the statistic YGREG iin» the result of hnearlzmg
unbiased for Y.

(3.1)

GREG> 1S

3.2 Linear GREG

By linear GREG I mean one that is generated by a linear
fixed effects assisting model. The predictions are
V= x;{BS;dq with

B, = (zsqukxkx;c )_1 (stquxkyk)

so (3.1) becomes

YA'GREG = (ZU Xy )' B

The g, are scale factors, chosen by the statistician. The
standard choice is g, =1 for all k. The choice of the 9 has
some (but often limited) impact on the accuracy of Y3
near-unbiasedness holds for any specification (barring
outrageous choices) for the ¢,. Although the model is
simple, the linear GREG (3.2) contains many estimators,
considering the many possible choices of the auxiliary
vector X, and the scale factors ¢,. Under general
conditions,

wt 2. di (v —XB ). (32
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Foreo =V)IN =(3 dE =Y E)/N+0O,(n)

where Y d,E, is the Horvitz-Thompson estimator in the
residuals  E, =y, —x;B,,, with By =(Z,¢,x,x;)"
(Xu9q,x,y,). Hence, the design-based properties
E(Yypeo) =Y and Var(Y.,)~ Var(X,d,E,). A close
fitting linear regression of y on x holds the key to a small
variance for Y. (and this is very different from claiming
that “a linear regression is the true regression”).

The linear GREG in Sdrndal, Swensson and Wretman
(1992) was motivated via the linear assisting model &
stating that E,(y,)=Pp'x, and V(y,)=o;. Generalized
least squares fit gives the estimator (3.2) with ¢, =1/c;. In
that context, an educated guess about the variation of the
residuals y, —B'x, determines the g,. When the vector x,
is fixed, the modeling effort boils down to an opinion about
the residual pattern. The choice o =c’x, gives the
classical ratio estimator. If g, =p'x, for all keU and a
constant vector p, then (3.2) reduces to “the cosmetic
form” (X, x,)'B,,,,-

As Beaumont and Alavi (2004) and others have pointed
out, the linear GREG estimator is bias-robust (nearly
unbiased although the assisting model falls short of
“correct”), but it can be considerably less efficient (have
larger mean squared error) than model dependent alter-
natives which, although biased, may have a considerably
smaller variance. Thus one may claim that linear GREG is
not variance robust; nevertheless, it is a basic concept in
design-based survey theory.

The specification of x, should include variables (with
known population totals) that served already in defining the
sampling design. Design stage information should not be
relinquished at the estimation stage; instead, a “repeated
usage” is recommended. For example, in stratified simple
(STSI) random sampling, the vector x, in estimator (3.2)
should include, along with other available variables, the
dummy coded stratum identifier, Y, = (Y, Vias oo
Yins - Yarr ) » Where y,, =1 if element k belongs to stratum
h,and v,, =0 ifnot; A=1,..., H

We can write the linear GREG (3.2) as a weighted
sample sum, Y ppq =2 W, ,, with

w, =d, g g =1+ qMx;;
A= (ZUXk —stkxk )' (stquxkx;{ )_1

The weights w, happen to be calibrated to (consistent
with) the known population x-total: Y, w,x, =Y, X,. That
Yippe 15 expressible as a linearly weighted sum with
calibrated weights is a fortuitous by-product. It is not part of
GREG thinking, whose central idea formulated in (3.1) is
the fit of an assisting model. A few other GREG’s than the

(3.3)
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simple linear one also have the calibration property, as will
be noted later.

3.3 Non-linear GREG

Two features of the linear GREG (3.2) make it a
favourite choice for routine production in statistical
agencies: (i) the auxiliary population total >, x, becomes
factored out, so the estimation can proceed as long as an
accurate value for that total can be computed or imported,
and (ii) when written as the linearly weighted sum
Yopee = s W, ¥, the weight system (3.3) is independent of
the y-variable and can thereby be applied to all y-variables
in the survey. We need not know x, individually for all
k eU; knowing >, x, suffices. Needless to say, if we do
know all x,, more efficient (still nearly design unbiased)
members of the GREG family (3.1) can be sought. This will
also counter another criticism of the linear GREG, namely
that a linear model is unrealistic for some types of data. For
example, for a dichotomous y-variable, a logistic assisting
model may be both more realistic and yield a more precise
GREQG estimator.

By a non-linear GREG estimator | mean one generated
as in (3.1) by an assisting model of other type than “linear in
x, with fixed effects”. Among the first to extend the GREG
concept in this direction are Firth and Bennett (1998) and
Lehtonen and Veijanen (1998); see also Chambers et al.
(1993). In the last few years, several authors have studied
model-assisted non-linear GREG’s.

Non-linear GREG is a versatile idea; a variety of
estimators become possible via assisting models & of the
following type:

E.(yi|x,)=n, for keU 34

where the model mean p, and the model variance
V. (y,|x,) are given appropriate formulations.

"One application of (3.4) is when w, =u(x,,0) is a
specified non-linear function in x,. Having estimated 6 by
0, the fitted values needed for Y., in (3.1) are
M =u(xk,(§) for keU. For example, if the modeler
specifies logp, = o +p x,, the predictions for use in (3.1)
are, following parameter estimation, y, = exp(d + B X))

Other applications of (3.4) include generalized linear
models such that g(u,)=x,0, for a specified link function
g(), and V.(y.|x,)=v(n,) 1is given an appropriate
structure. We estimate @ by 0, the fitted values needed for

the non-linear GREG estimator 3.1 are
V=0, = g’l(x,'( 0). For example, using a logistic assisting
model, x,0 = logit(p, ) = log(uk (1=w)), and

y=0,= exp(xkﬂ)/(l + exp(xkﬂ))

Lehtonen and Veijanen (1998) examine the case of a
categorical study variable with / classes, i=1,2,...,1,
vy =1 if element k£ belongs to category 7, and y, =0 if
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not. For example, in a Labour Force Survey with / = 3
categories, “employed”, “not employed” and “not in the
labour force”, an objective is to estimate the respective
population counts ¥, =Y, v, ,i=1,2,3. These authors use
the logistic assisting model

i=2

E (y,k|xk) My s My = exp(x, 0, )/{1+ZGXP(X;0,'))(3-5)

Estimates ﬁ of the O, are obtained by maximizing
des1gn—we1ghted log-hkehhood The resultmg predictions
V=R, are used to form =Yudut
Yod, (v =), fori=12,..1

Another development is the application of GREG
reasoning to estimation for domains, as in Lehtonen,
Séarndal and Veijanen (2003, 2005) and Myrskyla (2007).
Mixed models are used in the first two of these papers to
assist the non-linear GREG. Let U, be a domain, U, c U,
whose total Y, =%, v, we wishto estimate, i =1,2,...,/
The 2005 paper derives the predictions for the non-linear
GREG from the logistic mixed model stating that for
keU,

Y; GREG

E, (yulxpsm,) = exp(x;{eia)/(l + z exp(x,0,, )j (3.6)

i=2

with 0, =P, +u,,, where u,, is a vector of domain
specific random deviations from the fixed effects vector B,.

Non-linear GREG’s assisted by models such as (3.5) and
(3.6) require model fitting for every y-variable separately;
there is no uniformly applicable weight system. However,
the question arises: Are there examples of non-linear
GREG?’s such that the practical advantages of linear GREG
are preserved, that is, a linearly weighted form with
calibrated weights independent the y-variable. The answer is
in the affirmative. Two directions in recent literature are of
interest in this regard:

Breidt and Opsomer (2000), Montanari and Ranalli
(2005) consider model-assisted local polynomial GREG
estimators, for the case of a single continuous auxiliary
variable with values x, known for all keU. Several
choices have to be made in the process: (1) the order ¢ of
the local polynomial expression, (2) the specification of the
kernel function, and (3) the value of the band width. The
resulting estimator can be expressed in terms of weights
calibrated with respect to population totals of the powers of
X, so that stkx,{ = ZUx,f for j=0,1,....q

Breidt, Claeskens and Opsomer (2005) develop a
penalized spline GREG estimator for a single x-variable; the
assisting model is  m(x;p) =B, +Bx+...+p,x7 +
YEiB, (x—x ), where (1)!=¢' if 1>0 and 0
otherwise, ¢ is the degree of the spline, and the k, are
suitably spaced knots, for example, uniformly spaced
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sample quantiles of the x, -values. After estimation of the
[ -parameters, they obtain the predictions J, =m(x,; B)
needed for the general GREG formula (3.1). The authors
point out that the resulting GREG estimator is calibrated for
the parametric portion of the model, that is,
stkx,{ =ZUx,{ for j=0,1,..,9, and also for the
truncated polynomial terms in the model as long a they are
left unpenalized.

We can summarize GREG estimation as follows. The
linear GREG has practical advantages for large scale
statistics production: It can be expressed as a linearly
weighted sum of y, -values with weights calibrated to
>uX,, the weights are independent of the y, -values and
may be applied to all y-variables in the survey. It is
sufficient to know a population auxiliary total Y, x,,
imported from a reliable source. Non-linear GREG may
give a considerably reduced variance, as a result of the more
refined models that can be considered when there is
complete auxiliary information (known x, for all k eU);
near design unbiasedness is preserved. Certain non-linear
GREG’s can be written as linearly weighted sums.

In academic exercises with artificially created
populations and relationships, one can provoke situations
where a nonlinear GREG has a large variance advantage
over a linear GREG. Such experiments are important for
illustration. However, to meet the daily production needs in
national statistical agencies; “farfetched”” nonlinear GREG’s
seem to be of fairly remote interest at this point in time; the
assisting models for GREG must meet requirements of
robustness and practicality. The attraction of a minor
reduction of the sampling variance is swept away by worries
about other (non-sampling) errors and troubles in the daily
production process.

The progression from linear to non-linear GREG creates
opportunities and generates questions. What is the most
appropriate formulation of the model expectation p,? How
sensitive are the results to the specification of the variance
part of the assisting model? To what extent is computational
efficiency an issue? Further research will respond more
fully to these questions.

4. The calibration approach to estimation

4.1 Calibration under basic conditions

A crucial step in the GREG approach reviewed in the
previous section is to produce predicted values y, through
the fit of an assisting model. By contrast, the calibration
approach, as defined in Section 1.1, does not refer explicitly
to any model. It emphasizes instead the information on
which one can calibrate. A key element of “calibration
thinking” is the linear weighting of the observed y-values,
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with weights made to confirm computable aggregates. This
conceptual difference will sometimes lead to different
estimators in the two approaches.

The calibration approach has considerable generality; it
can deal with a variety of conditions: complex sampling
designs, adjustments for nonresponse and frame errors. This
section, however, focuses on the basic conditions in Section
2: single phase sampling and full response. The notation
remains as in Section 2. The material available for
estimating the population total ¥ =3, y, is: (i) the study
variable values y, observed for kes, (ii) the known
design weights d, =1/n, for k€U, and (iii) the known
vector values x, for kU (or an imported total >, x,).
These simple conditions prevail in Deville and Séirndal
(1992) and Deville, Sarndal and Sautory (1993), papers
which gave the approach a name and inspired further work.
Even though the background is simple, calibration raises
several issues, some of them computational, as reviewed in
Section 5.

The objective in Sections 4.2 and 4.3 is to determine
weights w, to satisfy the calibration equation
2 WX, =2yX,, then use them to form the calibration
estimator of Y as I}C AL = 2s WV, Which we can confront
with the unbiased Horvitz-Thompson estimator by writing
I}CAL :fHT +2,(W —d})y,. 1t follows that the bias of
Yoo, I8 E(Yey)-Y =E(X, (W, —d,)y,). Meeting the
objective of near design unbiasedness requires
EC,(w, —d,)y,) =0, whatever the y-variable. Evidently,
the calibration should strive for small deviations w, —d,.

The objective “calibration for consistency with known
population auxiliary totals” can be realized in many ways.
We can construct many sets of weights calibrated to the
known >, x,. This section examines this proliferation from
two perspectives noted in the literature: the minimum
distance method and the instrumental vector method. Yet
another construction of a variety of calibrated weights is
proposed in Demnati and Rao (2004).

4.2 The minimum distance method

In this method, the calibration sets out to modify the
initial weights d, =1/, into new weights w,, determined
to “be close to” the d,. To this end, consider the distance
function G, (w, d), defined for every w>0, such that
G,(w,d)=0,G,(d,d)=0, differentiable with respect to
w, strictly convex, with continuous derivative
g,(w,d)=0G,(w,d)/ow such that g, (d,d)=0.
Usually the distance function is chosen such that
g, (w,d)=g(w/d)/q,, where the g, are suitably chosen
positive scale factors, g(-) is a function of a single
argument,  continuous,  strictly  increasing,  with
g)=0,g')=1. Let F(u)=g '(u) be the inverse
function of g(). Minimizing the total distance

Statistics Canada, Catalogue No. 12-001-X



106 Séarndal: The calibration approach in survey theory and practice

>,G,(w,,d,) subject to the calibration equation
YW X, =Xy X, leads to w, =d, F(q,x;)), where A is
obtained as the solution (assuming one exists) of

stkaF(CIkX;{}-) = Zka.

The weights have an optimality property, because a duly
specified objective function is minimized, but it is a “weak
optimality” in the sense that there are many possible
specifications of the distance function and the scale factors
9

Much attention has focused on the distance function
G,(w,d)=(w,—d,)/2d,q,. Tt gives g,(w,d,)=
(w, ld,~1)/q,; gw/dy=w/d -1, F(u)=g " (u)=1+u.
The term “the linear case” is thus appropriate. The task is
then to mimimize the  “chi-square  distance”
>.(w, —d,)/2d,q,, subject to T WX, =YX,
Equation (4.1) reads Y d,x, (1+ ¢, x,A) =Y X,, which is
easily solved for A. The resulting estimator of ¥ =3, y, is
Yo =Y,w,y, with weights w, =d,g, given by (3.3).
That is, Y., =Y 2 given by (3.2), and the residuals
that  determine  the  asymptotic  variance  are
E, =y, —x;B, , as given in Section 3.2. Some negative
weights w, may occur.

The linear GREG estimator implies weights that happen
to be calibrated (to X, x,), and the opposite side of the
same coin says that the linear case for calibration (with chi-
square distance) brings the linear GREG estimator. The
tendency in some articles and applications to intertwine
GREG thinking and calibration thinking stems from this
fact. Many successful applications of the use of auxiliary
information stem, in any case, from this linearity on both
sides of the coin. The Canadian Labour Force Survey is an
example, and an interesting recent development for that
survey is the use of composite estimators, with part of the
information coming from the survey results in previous
months, as described in Fuller and Rao (2001).

The calibration equation is satisfied for any choice of the
positive scale factors g, in (4.1). A simple choice is ¢, =1
for all . But it is not always the preferred choice. For
example, if there is a single, always positive auxiliary
variable, and x, =x,, then many will intuitively expect
Yoo =2,y to deliver the usual ratio estimator
Yux, (Xed,v)/(Z,d,x,), and it does, but by taking
q, =x;', not ¢, =1.

Another distance function of considerable interest is
G, (W, d)={w,logw,/d,)—w,+d,}/q,. It leads to
F(u)=g " (u) = exp(u), “the exponential case”. Then (4.1)
reads Y d, x, exp(q,X,A) = X, X,. Numeric methods are
required to solve for A, to obtain the weights
w, =d, exp(q,x,L). No negative weights w, will occur.

Deville and Sarndal (1992) show that a variety of
distance functions satisfying mild conditions will generate

4.1
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asymptotically equivalent calibration estimators. Alternative
distance functions are compared in Deville, Sarndal and
Sautory (1993), Singh and Mohl (1996), Stukel, Hidiroglou
and Sérndal (1996). Some distance functions will guarantee
weights falling within specified bounds, so as to rule out too
large or too small (negative) weights. Changes in the
distance function will often have minor effect only on the
variance of the calibration estimator Y., =Y w,y,, even
if the sample size is rather small. Questions about the
existence of a solution to the calibration equation are
discussed in Théberge (2000).

4.3 The instrument vector method

An alternative to distance minimization is the
instrumental vector method, considered in Deville (1998),
Estevao and Sirndal (2000, 2006) and Kott (2006). It can
also generate many alternative sets of weights calibrated to
the same information.

We can consider weights of the form w, =d, F(,'z,),
where z, is a vector with values defined for kes and
sharing the dimension of the specified auxiliary vector x,,
and the vector A is determined from the calibration
equation Y w,X, =>,X,. The function F(-) plays the
same role as in the distance minimization method; several
choices F(-) are of interest, for example, F(u)=1+u
and F'(u) = exp(u).

Opting for the linear function F(u)=1+u, we have
w, =d, (1+4'z,). It is an easy exercise to determine A to
satisfy the calibration equation > w,x, =>,X,. The
resulting calibration estimator is

?CAL :zxwkyk; w,=d,(1+1z,),

V=X % -2 dx) (X dzx) .

Whatever the choice of z,, the weights w, =
d,(1+L'z,) satisfy the calibration equation. The standard
choice is z, =x,. In particular, setting z, =g¢,x,, for
specified ¢,, gives the weights (3.3).

Even “deliberately awkward choices” for z, give
surprisingly good results. For example, let x, be a single
continuous auxiliary variable, and z, =c,x””'. Suppose
p=3, and ¢, =1 for 4 elements only, chosen at random
from n=100 elements in a realized sample s, and ¢, =0
for the remaining 96. The near-unbiasedness of
Yoo =2.d, (1+2/2,)y, is still present. Even with such a
sparse z-vector, the increase in variance, relative to better
choices of z,, may not be excessive.

When both sampling design and x-vector are fixed,
Estevao and Sérndal (2004) and Kott (2004) note that there
is an asymptotically optimal z-vector given by

Z, =1Z :a’,:lzm(d,{dk —-d,,)x,

4.2)
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where d,, is the inverse of the second order inclusion
probability m,, = P(k & { €s5), assumed strictly positive.
The resulting calibration estimator, Yoo =
>.d,(1+A'z;,)y,, is essentially the “randomization-
optimal estimator” due originally to Montanari (1987) and
discussed by many since then.

Andersson and Thorburn (2005) view the question from
the opposite direction and ask: In the minimum distance
method, can a distance function be specified such that its
minimization will deliver the randomization-optimal
estimator? They do find this distance; not entirely
surprisingly, it is related to (but not identical to) the chi-
square distance.

4.4 Does calibration need an explicitly stated model?

The calibration approach as presented in Sections 4.2 and
43 proceeds by simply computing the weights that
reproduce the specified auxiliary totals. There is no explicit
assisting model, unless one were to insist that picking
certain variables for inclusion in the vector x, amounts to a
serious modeling effort. Instead, the weights are justified
primarily by their consistency with the stated controls. Early
contributions reflect this attitude, from Deming (1943), and
continuing with Alexander (1987), Zieschang (1990) and
others. This begs the question: Is it nevertheless important to
motivate such “model-free calibration” with an explicit
model statement? It is true that statisticians are trained to
think in terms of models, and they feel more or less
compelled to always have a statistical procedure
accompanied by a model statement. It may indeed have
some pedagogical merit, also in explaining calibration, to
state the associated relationship of y to x, even if it is as
simple as a standard linear model.

But will a stated model help the users and practitioners
better understand the calibration approach? To most of them
the approach is perfectly clear and transparent anyway.
They need no other justification than the consistency with
stated controls. Will a search for “the true model with the
true variance structure” bring significantly better accuracy
for the bulk of the many estimates produced in a large
government survey? It is unlikely.

The next section deals with model-calibration. For that
variety, proposed by Wu and Sitter (2001), modeling has
indeed an explicit and prominent role. These authors call the
linear calibration estimator, ?C AL = 2s Wy, Wwith weights
w, given by (3.3), “a routine application without
modeling”. The description is appropriate in that all that is
necessary is to identify the x-variables with their known
population totals.

4.5 Model-calibration

The idea of model-calibration is proposed in Wu and
Sitter (2001) and pursued further in Wu (2003) and
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Montanari and Ranalli (2003, 2005). The motivating factor
is that complete auxiliary information allows a more
effective use of the x, known for every k € U than what is
possible in model-free calibration, where a known total
YuX, is sufficient. The weights are required to be
consistent with the computable population total of the
predictions p,, derived via an appropriate model
formulation. Thus the weight system may not be consistent
with the known population total of each auxiliary variable,
unless there is special provision to retain this property.
Model-calibration still satisfies all three parts, (a) to (c), of
the definition of calibration in Section 1.1; in particular, the
estimators are nearly design unbiased.

Consider a non-linear assisting model of the type (3.4).
We estimate the unknown parameter ® by 6, leading to
fitted values p, =i, = pn(x,, 0) computed with the aid of
the x, known for all k£ eU. It follows that the population
size N is known and should be brought to play a significant
role in the calibration. If minimum chi-square distance is
used, we find the weights of the model-calibration
estimator Voear = 2o W, 0, by minimizing
>, (w, —d,)* /(2d,q,), for specified ¢,, and d, =1/m,,
subject to the calibration equations

ZSWk :N;zxwkj}k :zUﬁk'

For simplicity, let us take g, =1 for all k; we derive the
calibrated weights, rearrange terms and find that the model-
calibration estimator can be written as

YA'MCAL = N{)_}s;d + ()T/U _)T/S;d )Bs;d}
Where )_/s;d = Zs dkyk /Zs dlm )T/s;d = stk.)’}k /Zv dk’ and
Bx;d :(zs d, (P, _)T/S;d)yk )/zxdl{ (Fr _)T/s;d)z'

The regression implied by B, is one of observed y-
values on predicted y-values. The idea of this regression
would hardly occur to the modeler is his/her attempts to
structure the relation between y, and x,, but it proves
effective in building the calibration estimator. Wu and Sitter
(2001) present evidence that

Fyerr ~NV/N=(X B =Y E )/ N+0,(n™)

with E =y, -y, - (1, —,)B,, where B, =
(ZU(“k _Hu)yk){ZU(“/{ _Hu)za and HU :Zuuk/N'
The coefficient B, may not be near one even in large
samples. It expresses a regression of y, on its assisting
model mean p, =p(x,, p). That is, ?MC A can be viewed
as a regression estimator that uses the model expectation 1,
as the auxiliary variable, leaving £, as the residuals that
determine the asymptotic variance of ¥, .

(4.3)

4.4)
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How does this asymptotic variance compare with that of
the non-linear GREG construction (3.1) for the same non-
linear assisting model and the same p, =1,? Formula (3.1)
implies a slope equal to unity in the regression between y,
and §, ={,; viewed in that light, Y., is a difference
estimator rather than a regression estimator and hence less
sensitive to the pattern in the data. The non-linear GREG
Y pe is in general less efficient than Y., . (It is of course
possible to modify Y., to also account for the
information contained in the known population size N.)

On the other hand, compared with the linear (model-free)
calibration estimator Y.,, =Y, w,y, with weights as in
(3.3), the model-calibration estimator Y,,.,, given by (4.4)
may have a considerable variance advantage but implies a
loss of the practical advantages of a consistency with the
known population total Y, x, and a multi-purpose weight
system applicable to all y-variables. The y-values in (4.4) are
linearly weighted, but the weights now also depend on the y-
values. It is thus debatable if Y., is a bona fide
calibration estimator.

In an empirical study, Wu and Sitter (2001) compare
Vyear =2 W, 7, calibrated according to (4.3), with the
non-linear GREG, ?GREG =Xu¥, +2.d, (v, —J,) givenby
(3.1), for the same non-linear assisting model and same
9 =fi,. The study confirms that ¥, has a variance
advantage over the non-linear Y. They created a finite
population U of size N =2,000 with values
(¥4 %), k=1,...,2,000, such that log(y,)= 1+x, +¢,;
the 2,000 values x, are realizations of the Gamma(l,1)
random variable, and ¢, is a normally distributed error. The
auxiliary information consists of the population size N and
the known values x, for k=1,...,2,000. Repeated simple
random samples of size n = 100 were taken; the assisting
model for both estimators was the log-linear
E.(yx,)=p, with log(u,)=0+pBx,. This model was
fit for each sample, using pseudo-maximum quasi-
likelihood estimation. The fitted values 7, = exp(&+fx,)
were used to form both Y., and ¥..;. The simulation
variance was markedly lower for ¥,,.,, . (The linear GREG
(3.2), identical to the model-free calibration estimator, was
also included in the Wu and Sitter study; not surprisingly, it
is even less efficient than the non-linear GREG, under the
strongly non-linear relationship imposed in their
experiment.)

Montanari and Ranalli (2005) provide further evidence,
for several artificially created populations, on the
comparison between Y., and the non-linear Y.
Their assisting model, y, =p, +¢,, is fitted via
nonparametric regression (local polynomial smoothing),
yielding predictions p, =i, for k e U. With this type of
model fit, the predictions , =i, are highly accurate. Not
surprisingly, the model-calibration estimator Yy,
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achieves only marginal improvement over the non-linear
YGREG'

We can summarize the calibration approach as follows:
The estimator of ¥ =3, y, has the linearly weighted form
Y=y, w,y,. In linear (model-free) calibration, the
calibration equation reads > w,X, = >,X,; a known
population auxiliary total >, x, is required, but complete
auxiliary information (known x, for all keU) is not
required; the same weights can be applied to all y-variables
(multi-purpose weighting); the estimator is identical to the
linear GREG estimator (but derived by different reasoning).
In model-calibration, the assisting model mean p, is non-
linear in x,; complete auxiliary information is usually
required; the calibration constraints include the equation
YWV, =2u ¥, the weights w, depend on the y,-
values, implying a loss of the multi-purpose property.

5. Computational aspects, extreme weights
and outliers

The computation of calibrated weights raises important
practical issues, discussed in a number of papers. All
computation must proceed smoothly and routinely in the
large scale statistics production of a national statistical
agency. Undesirable (or unduly variable) weights should be
avoided. Many practitioners support the reasonable
requirement that all weights be positive (even greater than
unity) and that very large weights should be avoided.

A few of the weights computed according to (3.2) can
turn out to be quite large or negative. Huang and Fuller
(1978) and Park and Fuller (2005) proposed methods to
avoid undesirable weights.

In the distance minimization method, the distance
function can be formulated so that negative weights are
excluded, while still satisfying the given -calibration
equations. The software CALMAR (Deville, Sérndal and
Sautory 1993) allows several distance functions of this kind.
An expended version, CALMAR2, is described in
LeGuennec and Sautory (2002). Other statistical agencies
have developed their own software for weight computation.
Among those are GES (Statistics Canada), CLAN97
(Statistics Sweden), Bascula 4.0 (Central Bureau of
Statistics, The Netherlands), g-CALIB-S (Statistics
Belgium). These strive, in different ways, to resolve the
computational issues arising. The user needs to consult the
users’ guide in each particular case to see exactly how the
computational issues, including an avoidance of undesirable
weights, are handled.

GES uses mathematical programming to minimize the
chi-square distance, subject to the calibration constraints as
well as to individual bounds on the weights, so that they will
satisfy A, <w, <B, for specified 4,, B,. Bascula 4.0 is
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described in Nieuwenbroek and Boonstra (2002). The
software g-CALIB-S, described in Vanderhoeft, Waeytens
and Museux (2001), Vanderhoeft (2001), uses generalized
inverse (the Moore—Penrose) for the weight computation;
consequently one need not be concerned about a possible
redundancy in the auxiliary information.

In Bankier, Houle and Luc (1997) the objective is two-
fold: to keep the computed weights within desirable bounds,
and to drop some x-variables to remove near-linear
dependencies. Isaki, Tsay and Fuller (2004) consider
quadratic programming to obtain both household weights
and person weights that lie within specified bounds.

An intervention with the weights (so as to get rid of
undesirable weight values) raises the question how far one
can deviate from the design weights d, without
compromising the desirable feature of nearly design
unbiased estimation. An idea that has been tried is to modify
the set of constraints so that tolerances are respected for the
difference between the estimator for the auxiliary variables
and the corresponding known population totals. Hence,
Chambers (1996) minimizes a “cost-ridged loss function”.

Outlying values in the auxiliary variables may be a cause
of extreme weights. Calibration in the presence of outliers is
discussed in Duchesne (1999). His technique of “robust
calibration” may introduce a certain bias in the estimates; it
may, however, be more than offset by a reduction in
variance.

When the set of constraints is extended to make the
weights restricted to specified intervals, a solution to the
optimization problem is not guaranteed. The existence of a
solution is considered in Théberge (2000), who also
proposes methods for dealing with outliers.

6. Calibration estimation for more
complex parameters

The calibration approach adapts itself to the estimation of
more complex parameters than a population total. Examples
are reviewed in this section. Single phase sampling and full
response continue to be assumed; the notation remains as in
Section 2. One example is the estimation of population
quantiles (Section 6.1), another is the estimation of
functions of totals (Section 6.2). Other examples in this
category, not reviewed here, are Théberge (1999), for the
estimation of bilinear parameters, and Tracy, Singh and
Arnab (2003), for calibration with respect to second order
moments.

6.1 Calibration for estimation of quantiles

The median and other quantiles of the finite population
are important descriptive measures, especially in economic
surveys. To estimate quantiles, the finite population
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distribution function must first be estimated. Before
calibration became popular, several papers considered the
estimation of quantiles, with or without the use of auxiliary
information. More recent articles have turned to the
calibration approach for the same purpose, including
Kovacevi¢ (1997), Wu and Sitter (2001), Ren (2002), Tillé
(2002), Harms (2003), Harms and Duchesne (2006) and
Rueda et al. (2007). As these papers illustrate, there is more
than one way to implement the calibration approach. The
non-smooth character of the finite population distribution
function causes certain complexities; these are resolved by
different authors in different ways.

Let A(-) denote the Heaviside function, defined for all
real zso that A(z)=1 if z>0 and A(z)=0 if z<0. The
unknown distribution function of the study variable y is

F,(1)= (6.1)

L3 A7)

The o -quantile of the finite population is defined as
0,, =inf{t|F (t)2a}. The auxiliary variable x;, taking
values X s “has the distribution function F (z) =
(I/N)XyA(t-x,) with o -quantile denoted Qwa
j=L2,..,J. A natural estimator of F) (¢) based on the
design Welghts d, —1/7‘Ck is

E ()= dAt— ).

qu

A calibration estimator F, (¢) of takes the form

Frw (0= Z;wz‘* WAG-y)  (62)
s 'k

where the weights w, are suitably calibrated to a specified
auxiliary information; then from l%vCAL (t) we obtain the

o -quantile estimator as Q = 1nf{t| LeaL()zaf. A
formula analogous to (6.2) holds for # « CAL ().

Without explicit reference to any model, Harms and
Duchesne (2006) specify the information available for
calibration as a known population size, N, and known
population quantiles Q_, for j=1,2,...,J. The complete
auxiliary information, “with  values X, = (X5 X))
known for k€U, is not required. (But in practice, the
complete information would usually be necessary, because
accurate quantiles of several x-variables are not likely to be
importable from outside sources.) They determine the w, to
minimize the chi-square distance Y, (w, —d, )’ /2d,q,, for
specified ¢,, subject to the calibration equations

stk = N’ QAx,CAL,a = Qx/on’ ] = 1’ 2’ A J

for suitably defined estimates Qv caL.o- Now, if we were to
specify Qv caL. o = Inf{t|F,  CAL (f)>a}, thenitis in general
not poss1ble to find an exact solution of the calibration
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problem as stated. Instead, Harms and Duchesne substitute
smoothed estimators, called “interpolated distribution
estimators”, of the distribution functions
F (@),j=L2,..,J. They replace A() by a slightly
modified function. Weights w, can now be obtained, as
well as a corresponding estimated distribution function
Fep (0); finally, O,,, is estimated as 0, = Fdy (00).

The resulting calibrated weights w, allow us to retrieve
the known population quantiles of the auxiliary variables.
This is reassuring; one would expect such weights to
produce reasonable estimators for the quantiles of the study
variable y. Moreover, in the case of a single scalar auxiliary
variable x, the resulting calibration estimator delivers exact
population quantiles for y when the relationship between y
and x is exactly linear, that is, when y, =fx, forall k eU.
An idea involving smoothed distribution functions is also
used in Tillé (2002).

The computationally simpler method of Rueda et al.
(2007) is an application of model-calibration, in that they
calibrate with respect to a population total of predicted y-
values. Complete auxiliary information is required. Using
the known x,, compute first the linear predictions
A :ﬁ'xk for keU, with ﬁ:(zsqukxkx;{)_l
(>,d,q,x,»,), where d, =1/m, and the g, are specified
scale factors. The weights w, are obtained by minimizing
the chi-square distance subject to calibration equations
stated in terms of the predictions, so as to have consistency
at J arbitrarily chosen points tyj=L..,J:

1 A .
WZSWkA(Zj D) =F, ), j=1,....J

where F,(¢;) is the finite population distribution function
of the predictions j,, evaluated at ¢;. It is suggested that a
fairly small number of arbitrarily selected points 7, may
suffice, say less than 10. Once the w, are determined, the
a:quantile estimate is obtained from
Foea()= 1/ NYZswA(E = )

Quantile estimation provides a good illustration that the
calibration approach can be carried out in more than one
way when somewhat more complex parameters are being
estimated. Both methods mentioned give nearly design
unbiased estimation. The Harms and Duchesne (2006)
weights are multi-purpose, independent of the y-variable; by
contrast, the method of Rueda et al. (2007) requires a new
set of weights for every new y-variable. Empirical evidence,
by simulation, suggests that both methods compare
favourably with the earlier quantile estimation methods, not
based explicitly on calibration thinking (but on the same
auxiliary information).

An extension of the calibration approach to the
estimation of other complex parameters, such as the Gini
coefficient, is sketched in Harms and Duchesne (2006).
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6.2 Calibration for other complex parameters

Plikusas (2006), and Krapavickaité and Plikusas (2005)
examine calibration estimation of certain functions of
population totals. (Their term ‘“non-linear calibration”
signifies “non-linear function of totals”; I do not use it here.)
A simple example is the estimation of a ratio of two totals,
R=Yy v, /Xy, Where y,, and y,, are the values for
element k of the variables y, and y,, respectively. (The
distribution function (6.1) is in effect also of ratio type, with
Vo =1, and N=%,1 as the denominator total.) These
authors examine the calibration estimator
Rey, =S, W,y | 2w, vy, Tts weights w,, common to
the numerator and the denominator, are determined by
calibration to auxiliary information stated as follows: There
is one auxiliary variable, x,,, for y,,, and another, x,,, for
Vas the ratio of totals Ry =>,x,, /Xy x,, is a known
value, by a complete enumeration at a previous occasion or
from some other accurate source. The proposed calibration
equation is X, w,e, =0, where e, =x;, — R,x,,. Because
Yue, =0, the weights, by minimum chi-square distance,
are

w, =d, {1—(zsdkek)(zsdke,f )_1 ek}.

These weights correctly retrieve the known ratio value
R,; setting y,, =x,, and y,, =x,, in R, , we have

zswkxlk _R = zswkek _

) = -
ZS WiXak > s WkXak

The empirical evidence in Plikusas (2006), and
Krapavickait¢ and Plikusas (2005) suggests that their
calibration estimator compares favourably (lower variance,
while maintaining near design unbiasedness) with other
estimators, derived through other arguments than cali-
bration, while relying on the same auxiliary information.

7. Calibration contrasted with other approaches

As many have noted, users view calibration as a simple
and convincing way to incorporating auxiliary information,
for simple parameters (Section 4), as for more complex
parameters such as quantiles, ratios and others (Section 6).
Simplicity and practicality are undeniable advantages, but
aside from that, is calibration also “theoretically superior”?
Are there instances where calibration can be shown to give
more accurate and/or more satisfactory answers on
questions of importance, when contrasted with other design-
based approaches?

Section 4.5 gave one indication that calibration thinking
may have an advantage over GREG thinking, in that model-
calibration may give more precise estimates than the
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non-linear GREG, for the same assisting model. The
following Section 7.1 gives another example where
calibration reasoning and GREG reasoning give diverging
answers, with an advantage for the calibration method.

7.1 An example in domain estimation

The example in this section, from Estevao and Sérndal
(2004), shows, for a simple practical situation, a conflict
between the results of GREG thinking and calibration
thinking. The context is the estimation of the y-total for a
sub-population (a domain).

A probability sample s is drawn from U =
{1, 2.k, ..., N}; the known design weights are
d, =1/m,. Let U, be a domain, U, cU. The domain
indicator is §, with value &, =1 if keU, and 5, =0
if not. The target of estimation is the domain total
Y, =>yy,, where vy, =6,v,, and y, is observed for
k es. The Horvitz-Thompson estimator Y,z =Y d, V.,
although design unbiased, has low precision, especially if
the domain is small; the use of auxiliary information will
bring improvement. An auxiliary vector value x, is
specified for every k e U.

As is frequently the case in practice, the elements
belonging to a domain of interest are not identified in the
sampling frame. (If they are, some very powerful
information is available from the start, but frequently real
world conditions are not that favourable.) But suppose
elements in a larger group U, are identifiable;
U,cU,cU. For example, suppose y is “income” and
U, a professional group specified for the persons listed in
the frame, while U, is a professional sub-group not
identified in the frame. We can identify the sample subsets
sc=sNU, and s, =sNU,, and we can benefit from
knowing the total Y, x., estimable without bias by
>.d, X, where X, =38,.X,, and 8, is the information
group indicator: 8., =1 if k€U, and &, =0 if not. The
domain auxiliary total >, x , is unavailable, because U, is
not identified. Calibration to satisfy > w,x, =X, X,

gives the nearly design unbiased  estimator
Yo =2uWVy> Where w, = d,(1+1%'z,), with
M =CuXy —Xod X ) dz,x,, )" The

asymptotically optimal instrument for the given vector x, is
(see Section4.3) z, =z, = d;'3,.,(d,d, —d,,)X.,

By contrast, regression thinking for the same auxiliary
information leads to ¥ ppe =2V, +(SuXe —
>,d, X )Bg.,, also nearly design unbiased, where the
regression coefficient B, = (¥:d, X, X} )™ ¥:d,X, y, isthe
result of a weighted least squares fit at a suitable level, using
all (when §=s) or part (when § —s) of the data points
(»,,x,) available for k €.

For example, the modeller may opt for a regression fit
“extending beyond the domain” (so that § o s, =sNU,),
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in an attempt to borrow strength for ¥, .., by letting it
depend also on y-data from outside the domain. By contrast,
I?qc A Telies exclusively on y-data in the domain, and this is
in effect better. Estevao and Sirndal (2004) show that
V,ca. with z, =z, has smaller (asymptotic) variance
than Y, s, N0 matter how § is chosen. Bringing in y-data
from the outside does not help; calibration thinking and

regression thinking do not agree.

8. Calibration estimation in the presence
of composite information

As the preceding sections have shown, many papers
choose to study estimation for direct, single phase sampling
of elements, without any nonresponse. The information
available for calibration is simple; the k:th element of the
finite population U ={1,2,...,k,..., N} has an associated
auxiliary vector value x, .

However, in an important category of situations, the
auxiliary information has composite structure. The
complexity of the information increases with that of the
sampling design. In designs with two or more phases, or in
two or more stages, the information is typically composed
of more than one component, reflecting the features of the
design. The information is stated in terms of more than one
auxiliary vector. For example, in two-stage sampling, some
information may be available about the first stage sampling
units (the clusters), other information about the second stage
units (the elements).

Consequently, estimation by calibration (or by any
alternative method) must take the composite structure of the
information systematically into account. The total infor-
mation has several pieces; the calibration can be done in
more than one way. All relevant pieces should be taken into
account, for best possible accuracy in the estimates. To
accomplish this in a general or “optimal” way is not a trivial
task. Calibration reasoning offers one way.

Regression reasoning, with a duly formulated assisting
model, is an alternative way, but it will strike some users as
more roundabout. Hence, surveys that allow composite
auxiliary information bring further perspectives on the
contrast between calibration thinking and GREG thinking.

Two-phase sampling and two-stage sampling are
discussed in this section. Another example of composite
information occurs for nonresponse bias adjustment, as
discussed in Section 9.

Another aspect of composite information occurs when
the objective is to combine information from several
surveys. This, too, can be a way to add strength and improve
accuracy of the estimates. It is a motivating factor (in
addition to the user oriented motive to achieve consistency
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among surveys) in the previously mentioned repeated
weighting methodology of the Dutch statistical agency.
Combined auxiliary information for GREG estimation is
considered in Merkouris (2004).

8.1 Composite information for two-phase sampling
designs

Double sampling refers to designs involving two
probability samples, s, and s,, from the same population
U=A{l,..,k,.., N}. Auxiliary data may be recorded for
both U and s, the study variable values y, are recorded
only for k es, with an objective to estimate ¥ =3 y,.
Hidiroglou (2001) distinguishes several kinds of double
sampling: In the mnested case (traditional two phase
sampling), the first phase sample s, is drawn from U, the
second phase sample s, is a sub-sample from s,, so that
Uo>s Ds,. Two non-nested cases can be distinguished:
In the first of these, s, is drawn from the frame U;; s,
from the frame U,, where U, and U, cover the same
population U; the sampling units may be defined
differently for the two frames. In the second non-nested
case, s, and s, are drawn independently from U.

To illustrate how composite information intervenes in the
estimation, consider the nested case. The design weights are
d,, =1/m,, (s, sampled from U); d,, =1/=n,,(n,, =Ty,
in sub-sampling s, from s,). The combined design weight
is d, = d,,d,,. The basic unbiased estimator ¥ =¥ d,,
can be improved by a use of auxiliary information, specified
here at two levels:

Population level: The vector value x,, is known (given in
the frame) for every k €U, thus known for every & €,
and for every k €s,; >, X,, is a known population vector
total;

First sample level: The vector value x,, is known
(observed) for every k es,, and thereby known for every
k € s,; the unknown total >, x,, is estimated without
biasby ¥ d,.x,,.

How do we best take this composite information into
account? In an adaptation of GREG thinking, Sérndal and
Swensson (1987) formulated two linear assisting models,
the first one stated in terms of the x,, -vector, the other one
also brings in the x,, -vector. The two models are fitted; the
resulting predictions, of two kinds, are used to create an
appropriate GREG estimator ?GREG of Y =X, y,.

Dupont (1995) makes the important point that the given
composite information invites “two different natural
approaches”: Besides the GREG approach, there is a
calibration approach that will deliver final weights w, for a
calibration estimator Y., =X w,y,. It is of interest to
compare the results of the two approaches. Both of them
allow more than one option: In the GREG approach, there
are alterative ways of formulating the linear assisting
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models with their respective variance structures. In the
calibration approach, alternative formulations of the
calibration equations are possible.

For example, a two-step calibration option is as follows:
First find intermediate weights w,, to satisfy
5 WXy, = XyXy,; then use the weights w), in the second
step to compute the final weights w, to satisfy

ZUXIk
Z WiXp = Z WXy =
: ZS1 Wy Xop

where X, is the combined auxiliary vector

Alternatively, in a single step option, we determine the
w, directly to satisfy
z u Xk

X, = )
zsz e Zsl dy Xy

The final weights w, are in general not identical in the
two options. Suppose that Y, x,, is an imported X, -total.
At closer look, the two-step option requires more extensive
information, because individually known values x,, are
required for k € s;, whereas it is sufficient in the single step
option that they be available for & €s,. Some variance
advantage may thus be expected from the two-step option,
since X, wy; X, is often more accurate (as an estimator of
YuXy) than ¥, d,x,, in the single step procedure.
Nevertheless, this anticipation is not always confirmed; the
single step method can be better, as when x; and x, are
weakly correlated.

Dupont (1995) and Hidiroglou and Sérndal (1998)
examine links that exist, not surprisingly, between the two
approaches. A GREG estimator, derived from assisting
models with specific variance structures, may be identical to
calibration estimator, if the weights of the latter are
calibrated in a certain way. In other cases, differences may
be small.

The efficiency of different options depends in rather
subtle ways on the pattern of correlation among y,, X,, and
X,,. For example, to what extent do x;, and X,
complement each other, to what extent are they substitutes
for one another? In the GREG approach, it is difficult or
even futile to pinpoint a variance structure that truly
captures a “reality” behind the data. The calibration
approach is more direct. Some of its possibilities are
explored in Estevao and Sarndal (2002, 2006).

8.2 Composite information in two-stage sampling
designs

The traditional two-stage sampling set-up (clusters
sampled at stage one, elements sub-sampled within selected
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clusters in stage two) has in common with two-phase
sampling that the total information may have more than one
component. There may exist (a) information at the cluster
level (about the clusters); (b) information at the element
level for all clusters; (c) information at the element level for
the selected clusters only. Here again, authors are of two
different orientations: some exploit the information via
calibration thinking, others follow the GREG thinking route.

Estevao and Sédrndal (2006) develop calibration
estimation for the traditional two-stage set-up, with
composite information specified as follows: (i) for the
cluster population U, there is a known total X X,
where x,; is a vector value associated with the cluster U,
for ieU,; (i) for the population of elements U =
UieUI U,, there is a known total ¥, x,, where the vector
value x, is associated with the element k e U. Suppose
both cluster statistics and element statistics are to be
produced in the survey: Both the cluster population total
Y, =2y, Y and the element population total ¥ =3, y;
are to be estimated.

If no relation is imposed between cluster weights w;, and
element weights w,, the former are calibrated to satisfy
Yo WXy = 2, X(yi the latter to satisfy
YW X, =2y X,. (Here, s; is the sample of clusters from
Uy;s; is the sample of elements from the cluster U,;
s ZU[ESI s, 1s the entire sample of elements.) Then
YieaL =2, WiV estimates the cluster population total
Y, and Y., =X w,y, estimates the element population
total Y.

Integrated weighting is often used in practice: A
convenient relationship is imposed between the cluster
weight w;, and the weights w, for the elements within the
selected cluster. Two forms of integrated weighting are
discussed in Estevao and Sarndal (2006).

One of these is to impose w; =d,wy, where d, is the
inverse of the probability of selecting element & within
cluster i. (For example, in single stage cluster sampling,
when all elements & in a sampled cluster are selected, then
d,; =1. Consequently w, =w; is imposed, and all
elements in the cluster receive the same weight for
computing element statistics, and that same weight is also
used for computing cluster statistics.) The calibration
equation WX, =2 X, then reads
2 Wi 2, X, = 2y X. The cluster weights wy; are now
derived by minimizing ¥, (w, —d,;)’/d, subject to the
calibration equation that takes both kinds of information into
account:

WX ()i X(o)i
2 Wik :[ZUI ()]‘ &)

ZSI Wuzs, dyiXy ZUXk
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Once the w; are determined, the element weights
w, =dy;w; follow.

Another reasonable integrated weighting is to impose
X W, =N w,. For example, for single stage cluster
sampling it implies that the cluster weight w;, is the average
of the element weights w, in that cluster.

Two-stage sampling is also the topic in Kim, Breidt and
Opsomer (2005). They assume auxiliary information for
clusters, via a single quantitative cluster variable x,,, but
none for elements. They develop and examine a GREG type
estimator ~ of the element total Y =3,y,
Y= v, B + Xy, d; (6, —(i,), where 7, is design unbiased
for the cluster total 7, =¥, y,, and [i; is obtained by local
polynomial regression fit. The estimator can be expressed
on the linearly weighted form, with weights that turn out to
be calibrated to the population totals of powers of the cluster
variable x;.

8.3 Household weighting and person weighting

Some important social surveys set the objective to
produce both household estimates and person estimates;
some study variables are household (cluster) variables,
others are person (element) variables. Consequently, a
number of papers have addressed the situation with single
stage cluster sampling (d,, =1) and the integrated
weighting that gives all members of a selected household
equal weight, a weight also used for producing household
statistics. A general solution for this weighting problem,
when both household information and person information
are specified, is to obtain the household weights w;
calibrated as in equation (8.1) with d,, =1, then take
w, =w,.

Several articles focus on auxiliary vector values x,
attributed to persons. Alexander (1987) derives weights by
minimizing chi-square distance, whereas Lemaitre and
Dufour (1987) and Niewenbrook (1993) derive the
integrated weights via a GREG estimator. The Lemaitre and
Dufour technique proceeds by an indirect construction of an
“equal shares auxiliary vector value” for all persons in a
selected household; their result is derivable from the direct
procedure in Section 8.2.

The household-weighting/person-weighting question is
revisited in more recent papers. Some authors display
calibration thinking, others GREG thinking. Isaki, Tsay and
Fuller (2004) formulate the problem as one of calibrated
weighting; their weights respect both household controls
and person controls; no explicit assisting models are
formulated. By contrast, Steel and Clark (2007) proceed by
the GREG approach, with linear assisting model statements
and accompanying variance structures.
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9. Calibration for nonresponse adjustment
9.1 Traditional adjustment for nonresponse

The context of many good theory articles is the simple
one of Section 2, which includes total absence of
nonresponse. It is good theory for conditions that seldom or
never occur. (As an author of papers in that stream, I am not
without guilt) Practically all surveys encounter non-
response; although undesirable, it is a natural feature, and
theory should incorporate it, from the outset, via a
perspective of selection in two phases.

In many surveys, nonresponse rates are extremely high
today, compared with what they were 40 years ago, that is,
so low that one could essentially ignore the problem. Today,
survey sampling theory needs more and more to address the
damaging consequences of nonresponse. In particular, one
pressing objective is to examine the bias and to try to reduce
it as far as possible.

A probability sample s is drawn from U =
{1, 2,...,k,.., N}; the known design weight of element &
is d, =1/m,. Nonresponse occurs, leaving a response set 7,
a subset of s; the study variable value y, is observed for
k € r only. The unknown response probability of element &
is Pr(k e r|s) =0,. The unbiased estimator ¥ =Y., d ¢, v,
is ruled out because ¢, =1/0, is unknown. To keep the idea
of a linearly weighted sum, how do we then construct the
weights? Unit nonresponse adjustment by weighting, based
on “nonresponse modeling”, has a long history. Calibration
offers a newer perspective.

In what we may call “the traditional procedure”, the
probability design weights d, =1/r, are first adjusted for
nonresponse and possibly for other imperfections such as
outliers. The information used for this step is often a
grouping of the sampled elements. Finally, if reliable
population totals are accessible, the adjusted design weights
are subjected to a calibration with respect to those totals.

The methodology of the Labour Force Survey of Canada,
described in Statistics Canada (1998), exemplifies this
widespread practice. A (modified) design weight is first
computed for a given household, as the product of three
factors. The product of the design weight and a nonresponse
adjustment factor is called the sub-weight. The sub-weights
are subjected in the final step to a calibration with respect to
postcensal, highly accurate estimates of population by age
group, sex and sub-provincial regions. The final weights
meet the desirable objective of consistency, in regions
within a province, with the postcensal estimates. The
nonresponse bias remaining in the resulting estimates is
unknown but believed to be modest.

The traditional procedure is embodied in the estimator
type ¥ =Z,dk(1/ék)yk, where 0, has been estimated by
) . In a preliminary step, using response (propensity)
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modeling. What theory demands of the statistician is not an
easy task, namely, to formulate “the true response model”,
capable of providing accurate, non-biasing values 0 .- But
the factors 1/0 . are applied in many surveys in an uncritical
and mechanical fashion, for example, by straight expansion
within the strata already used for sample selection.

The traditional procedure is apparent for example in
Ekholm and Laaksonen (1991) and in Rizzo, Kalton and
Brick (1996).

Practitioners often act as if the resulting ¥ =
>.d, 1/ ) )Y, (following a more or less probing response
modeling trying to get the 0,) is essentially unbiased,
something which it is not (unless the ideal model happens to
be specified); one acts (for purposes of variance estimation,
for example) as if 7,0, is the true selection probability of
element k in a single step of selection, something which it is
definitely not. This practice, with roots in the idyllic past,
becomes more and more vulnerable as nonresponse rates
continue their surreptitious climb.

An unavoidable bias results from the replacement of 0,
by 6 .- Decades ago, when the typical nonresponse was but
a few per cent, it was defendable to ignore this bias, but with
today’s galloping nonresponse rates, the practice becomes
untenable. By first principles, unbiased estimation is the
goal, not an estimation where the squared bias is a
dominating (and unknown) contributor to the Mean Squared
Error. We must resolve to limit the bias as much as possible.
Calibration reasoning can help in constructing an auxiliary
vector that meets this objective.

9.2 Calibration for nonresponse bias adjustment

More or less contrasting with the traditional procedure
are a number of recent papers that emphasize calibration
reasoning to achieve the nonresponse adjustment. Recent
references are Deville (1998, 2002), Ardilly (2006), chapter
3, Skinner (1998), Folsom and Singh (2000), Fuller (2002),
Lundstrom and Sérndal (1999), Sérndal and Lundstrom
(2005) and Kott (2006).

Calibration reasoning starts by assessing the total
available auxiliary information: information at the sample
level (auxiliary variable values observed for respondents
and for nonrespondents), information at the population level
(known population auxiliary totals). The objective is to
make the best of the two sources combined, so as to reduce
both bias and variance. The design weights are modified, in
one or two calibration steps, to make them reflect (i) the
outcome of the response phase, (ii) the individual
characteristics of the respondents, and (iii) the specified
auxiliary information. The information can be summarized
as follows:
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Population level: The vector value x is known (specified
in the frame) for every k € U, thus known for every k e s
and for every k e r; ¥, x; is a known population total.

Sample level: The vector value x, is known (observed) for
every kes, and thereby known for every ker; the
unknown total ¥, X, is estimated without bias by ¥, d,x; .

Calibration on this composite information can be done in
two steps (intermediate weights computed first, then used in
the second step to produce final weights) or directly in one
single step. Modest differences only are expected in bias
and variance of the estimates. In the single step option, the
combined auxiliary vector and the corresponding infor-

mation are
X, = XZ ,X_ zUXk
k — o |° - o |
X, zsdkxk

Using an extension of the instrument vector method in
Section 4.3, we seek calibrated weights w, =d,v,, where
v, = F(\'z,) is the nonresponse adjustment factor, with a
vector A determined through the calibration equation
>.wX, =X; the resulting calibration estimator is
Yoo =2, w,y,. It is enough to specify the instrument
vector value z, for respondents only; z, is allowed to
differ from x,. The function F(-) has the same role as in
Sections 4.2 and 4.3. Here, F(L'z,) implicitly estimates the
inverse response probability, ¢, =1/6, as Deville (2002),
Dupont (1995), Kott (2006) have noted. In the linear case,
Fu)=1+u, and v, =1+A'z,, with
M=(Cux, -2, dx, )X, dekXI'( )71'

The variables that make up the vector x,, although
observed for sampled elements only, can be crucially
important for the reduction of nonresponse bias (although
less important than the x; for the reduction of variance).
For example, Beaumont (2005b) discusses data collection
process variables can be used in building the x, vector
component.

9.3 Building the auxiliary vector

In some surveys, there are many potential auxiliary
variables, as pointed out for example by Rizzo, Kalton and
Brick (1996), and Sérndal and Lundstrtdom (2005). For
example, for surveys on households and individuals in
Scandinavia, a supply of potential auxiliary variables can be
derived from a matching of existing high quality
administrative registers. A decision then has to be made
which of these variables should be selected for inclusion in
the auxiliary vector x, to make it as effective as possible,
for bias reduction in particular. As Rizzo, Kalton and Brick
(1996) point out, “the choice of auxiliary variables is ...
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probably more important than the choice of the weighting
methodology.”

Let us examine the bias, when z, =x,. We need to
compare alternative X, -vectors in order to finally settle one
likely to yield the smallest bias. (I assume X, to be such
that p'x, =1 for all £ and some constant vector p, as is the
case for many X, -vectors, including the examples 1 to 5 at
the beginning of Section 2.) A close approximation to the
bias of Y., is obtained by Taylor linearization as
nearbias(Yo, ) = (Sy x;)'(By.o —By), which involves a
difference between the weighted regression coefficient
By, = (20 0,x,x; )_1 >0 0,x,7, and the unweighted one,
B, =(Xyx,X,) " (Xyx,»,). Unless all 0, are equal, the
bias caused by the difference in the two regression vectors
may be substantial, even though X, is a seemingly “good
auxiliary vector”. This expression for nearbias is given in
Sarndal and Lundstrom (2005); related bias expressions,
under different conditions, are found in Bethlehem (1988)
and Fuller er al (1994). We can write alternatively
nearbias(Y., )=, (0 M, —1)y,, where M, = (3, x,)’
(Zy0,x,x,)"'x,. In comparing possible alternatives x,, a
convenient benchmark is the “primitive auxiliary vector”,
x, =1 for all keU, which gives Y, =
Ny.=NY,y,/n, where n is the number or
respondents, with nearbias(N y,)= N(y,.4 — V), where
Voo =20 /200, and y, =Xy, / N. The ratio

nearbias(};CAL) _ ZU OM, -1y,

relbias(Y, =
(Fear) nearbias(Ny,) Ny =)

measures how well a candidate vector x, succeeds in
controlling the bias, when compared with the primitive
vector. We seek an x, that will give a small bias. But
relbias(¥,.,, ) is not a computable bias indicator; it depends
on unobserved y, and on unobservable 6,. We need a
computable indicator that approximates relbias(Y,.,, ) and
depends on the x-vector but not on the y-variables, of
which the survey may have many.

It is easy to see that relbias(¥ ., )=0 if an ideal
(probably non-existent) x-vector could be constructed such
that ¢, =1/6, =Ax, for all keU and some constant
vector A.

For an x-vector that can actually be formed in the survey,
we can at least obtain predictions of the ¢,: Determine A
to minimize ¥, 0, (¢, —A’x,)’; we find A=A4,, where
A =(Cux,) (Zy0,x,x,)7"; the predicted value of ¢, is
by =M, X, =M,. The (theta-weighted) first and second
moment of the predictions ¢, =M, are, respectively,
My,=Yy0M,/%,0,=N/%,0,= 1/6, and

1 — 2 rERYZ Y )
0 :szGk(Mk M) =1/0,) M, —1/6,)
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where M, =Y, M,/N. Sirndal and Lundstrom (2007)

show that relbias(¥.,,) and Q have under certain
conditions an approximately linear relationship,

relbias(Yo, ) =1 — Q

0

where ¢, =X, ¢, /N and Q, =(1/6,)(¢, —1/0,) is the
maximum value of Q. Thus if Q were computable, it could
serve as an indicator for comparing the different candidate
X, -vectors. A computable analogue Q of Q is instead
obtained as the variance of the corresponding sample-based
predictions b, =Ax, =(X,d,x,)
(X, d,x,x;)"'x, =m,, so that

A 1 _ _ _
e= z—dzrdk (my, — mr;d)2 =M. (mS;d - mr;d)
A9k

where

7 :zrdkmk:zsdk.rﬁ :stkmk
Yd X Y

We expect relbias to decrease in a roughly linear fashion as
0 increases; thus, independently of the y-variables, O may
be used as a tool for ranking different x-vectors in regard to
their capacity of reduce the bias.

We canuse O as a tool to select x-variables for inclusion
in the x,-vector, for example, by stepwise forward
selection, so that variables are added to x, one at a time, the
variable to enter in a given step being the one that gives the
largest increment in Q. The method is described in Sirndal
and Lundstrom (2007).

10. Calibration to account for other
non-sampling error

Nonresponse errors are critical determinants of the
quality of published statistics. When we examine how the
calibration approach may intervene in the treatment other
sources of non-sampling error than the nonresponse, the
literature to date is not surprisingly much less extensive.
However, several authors sketch a calibration reasoning to
also incorporate frame errors, measurement errors, and
outliers. Calibration has a potential to provide a more
general theory for estimation in surveys, encompassing the
various non-sampling errors.

As Deville (2004) points out (my translation from the
French): “The concept of calibration lends itself to be
applied with ease and efficiency to a great variety of
problems in survey sampling. Its scope goes beyond that of
regression estimation, an idea to which some seem to wish
to reduce the calibration approach”. He provides a brief
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sketch of how a treatment of several of the nonresponse
errors may be accomplished under the caption of calibration
thinking.

Folsom and Singh (2000) present a weight calibration
method using what they call the generalized exponential
model (GEM). It deals with three aspects: extreme value
treatment, nonresponse adjustment and calibration through
post-stratification. The method provides built-in control for
extreme values. Calibration to treat both coverage errors
(under- or over-coverage of the frame) and nonresponse is
discussed in Sdrndal and Lundstrom (2005) and Kott
(2006). Skinner (1998) discusses uses of calibration in the
presence of nonresponse and measurement error. He notes
something which remains a challenge almost ten years later:
“More research is needed to investigate the properties of
calibration estimates in the presence of non-sampling
errors”.

11. Conclusion

If I am to select one issue for a concluding reflection on
the contents of this paper, let me focus on the concept of
auxiliary information. It is the pivotal concept in the paper.
If there is not auxiliary information, there is no calibration
approach; there is nothing to calibrate on. I noted on the
other hand that regression (GREG) estimation is an
alternative but different thought process for putting auxiliary
information to work in the estimation.

An objective in this paper has been to give a portrait of
the two types of reasoning, and I made a point of noting
how the thinking differs. I gave examples where essentially
the same estimation objective is tackled by some authors
through calibration reasoning, by others through GREG
reasoning (or at least primarily by one or the other type).
The respective estimators that they end up recommending
may or may not agree. Whether or not the difference has
significant consequence (for variance, for bias, for practical
matters such as consistency and transparency) depends on
the situation. This paper may help contributing an awareness
of the separation existing between two thought processes
that have guided researchers survey sampling.
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