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Using Calibration Weighting to Adjust for Nonresponse and
Coverage Errors

Phillip S. Kott '

Abstract

Calibration weighting can be used to adjust for unit nonresponse and/or coverage errors under appropriate quasi-
randomization models. Alternative calibration adjustments that are asymptotically identical in a purely sampling context can
diverge when used in this manner. Introducing instrumental variables into calibration weighting makes it possible for
nonresponse (say) to be a function of a set of characteristics other than those in the calibration vector. When the calibration
adjustment has a nonlinear form, a variant of the jackknife can remove the need for iteration in variance estimation.

Key Words: Prediction model; Quasi-randomization model; Quasi-randomization consistent; Instrumental variable;

Generalized raking.

1. Introduction

Calibration weighting was originally developed as a
method for reducing sampling errors while retaining
randomization consistency. Deville and Sarndal (1992)
demonstrated that many alternative forms of calibration
weighting are asymptotically identical in the sampling
context. This lead to a breakthrough in our understanding of
common weight adjustment methods like raking that do not
appear in generalized-regression (GREG) estimator format.

Folsom and Singh (2000) showed that calibration
weighting can also be used to adjust for known coverage
errors and/or unit nonresponse under appropriate quasi-
randomization models. Their work is not in the refereed
literature. The heart of this article repeats key results in
Folsom and Singh including a necessary modification of the
Deville-Sérndal approach to model variance/randomization
mean-squared-error estimation in this expanded context. An
earlier, strictly linear version of calibration weighting for
unit-nonresponse adjustment can be found in Fuller,
Loughin and Baker (1994). See also Lundstrém and Sérndal
(1999).

A distinction is drawn between the prediction model
usually underpinning calibration and the quasi-randomiza-
tion model in Folsom and Singh. Unlike in Folsom and
Singh, however, both properties are explored here. Further-
more, the explanatory variables in the quasi-randomization
model are allowed to differ from the calibration variables.
This is likewise allowed in Lundstrém and Sérndal.

A new jackknife is proposed which is analogous to the
Deville-Sarndal linearization variance estimator. It employs
replicate weights computed in one step even though the cali-
bration weights themselves may be determined iteratively.

After introducing the popular notion of calibration
weighting, Section 2 provides a review of the GREG special

case in a purely sampling context. Section 3 describes
Estevao and Sérndal’s (2000) extension of calibration
weighting in its linear form to include instrumental
variables. Section 4 expands Deville and Sarndal’s treat-
ment of calibration weighting to include the possibility of
instrumental variables. Section 5 reviews variance/mean
squared error estimation, proposing a new jackknife for
certain designs. Section 6 describes how calibration
weighting can be used to adjust for nonresponse. In this
context, alternative functional forms of calibration
weighting need no longer be asymptotically identical.
Section 7 discusses quasi-randomization models for
coverage errors, that is, frame under- or over-coverage.
Section 8 contains a small empirical example supporting the
new jackknife. Section 9 provides a discussion of alternative
approaches and areas for future research.

2. Calibration Weighting and
the GREG Estimator

Suppose we knew the selection probability, =,, for each
sample element & in the sample S. We can estimate any
population total, 7, = >, y,, where U denotes the popula-
tion, with the expansion estimator t, =2/ =
S v, /m,,where I, =1 when keS and O otherwise.
Treating the /, as random variables, it is easy to see that
t, ¢ 1s an unbiased estimator for 7',. Properties arising
when the /, are treated as random variables are called
randomization-based. We can also write ¢, , =Y, a,y, =
Ysa, v, where a, =1, /m, is the sampling weight of
element £.

Deville and Sarndal (1992) coined the term “calibration
estimator” to describe an estimator of the form
1, caL = 2s Wiy Where Ygwix, =%, x, =T, for some
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row vector of auxiliary variables, x, =(x,;, ..., Xp, ), about
which T, is known. Since there is generally a continuum of
sets {w, |k € S} that satisty the calibration equation:
S wpx, = T ()
kes
Deville and Sarndal required that the difference between the
set of weights, {w, |k e S}, satisfying equation (1) and
{a,|k € S} minimize some loss function.
An alternative approach to survey sampling treats the y,
as random variables satisfying the linear prediction model:

V=X B+e, )

where  E(g,|[{x,,/,|geU})=0 for all keU. By
conditioning this expectation on the /,, we are assuming
the sampling mechanism can be ignored. This is a crucial,
and sometimes unreasonable, aspect of the (prediction)
model-based framework.

It is easy to see that ¢, ., is an unbiased estimator for
T, under the model in the sense that E, (t, ca—T,)=0
(suppressmg the conditioning for notational convemence)
the subscript € refers to treating the €, as random variables
(and the 7, as fixed constants).

For our purposes, the general(ized) regression or GREG
estimator has the form:

tnyREG = tny
-1
! !
+ (Tx_z akxkj(z Ckakxkxkj z G4 X Ve (3)
keS keS keS

where ¢, is an arbitrary constant which may or may not be
a function of x,, and lim, Y, ¢ X;X,/N=A is a
positive definite matrix, where N is the size of U. This last
condition means that X c,a,Xx;x, will usually be
invertible in practice. We will assume that it is always
invertible for convenience.

The GREG estimator in equation (3) can be rewritten in
calibration formas ¢, Gppg = 25 Wy, Where

-1

w, =a, +{Tx - ajxjj{z cjajxjxjj Ca; X
Jjes

Strictly speaking, the w, are functions of the realized

sample, S, and the c,a,, but we suppress that in the notation

for convenience. Observe that the calibration weights can be

expressed as

we = a, (1+¢.x,q), 4)

where q=[(Z5a,¢,X)x,) ' T(T, - Zsax,)
vector, since X,q = q'X;.

Let us assume that reasonable regularity conditions hold
(see, for example, Kott 2004a for a more thorough treat-
ment) and the sample plan is such that ¢, -7, =

O,(N/ Jn), where n is the expected size of S (the actual
size can be random), Yga,x, —T, =0,(N/J/n), and

is a column
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~Yy e, x,f, =0,(N//n), where f, can be

%, (Xy ¢ Xx,)"' Sy ¢xly,, so that
YucxXe =0, and Ysa.cx,e, =0,(N/n). We can
express the error of ¢, Grpg a8

T

tnyREG 4y

=Z Wil —

s o X,y
X, or y,. Let e, =y,

Zyk

keS keU
=Y we, - e (since > wx = xkj

keS keU keS keU

1

= Zﬂkek + (T;& —Zﬂkxkj(z akckx;cxkj Z a,cxpe,

keS keS keS keS

_ z e,
keU

= z a.e, — z e, + O,(N/n). ®)

keS keU

It is now not hard to see that the GREG estimator is
randomization cons1stent that  is, plim,
[, greg —T,)/N]= Moreover, both the relative
randomization bias and relative randomization mean
squared error of the GREG estimator are order 1/n. Since
mean squared error = bias® + variance, we can conclude
that the randomization bias of the GREG estimator is
usually an asymptotically insignificant contributor to its
mean squared error.

3. Redefining Calibration Weights

In their original definition of calibration weights, Deville
and Sdrndal (1992) required that the set of calibration
weights, {w,|k €S} minimize some distance function
between the members of the set and the original sampling
weights, the «,, subject to satisfying the calibration
equation. As a result, the calibration estimator, ¢, ., =
> s W, ,, was both unbiased under the model in equation
(2) and usually randomization consistent.

Estevao and Sérndal (2002) suggested removing the
requirement that the calibration weights minimize a distance
function. Instead, they essentially proposed that the w, need
only satisfy the calibration equation and be of the
“functional form:”

w, = a,(1+h, q), (6)

where h, is a row vector with the same dimension as x,
such that g a,h,x, is invertible, and q is a column vector
of that same dimension. Equation (6) is a mild generaliza-
tion of (4) where h, effectively replaces ¢, x, .

It is not hard to see that q=[(Xsahx; Y
(T, —Xsa,x;)". Moreover, under mild conditions we as-
sume to hold, 7, ¢\ =Xs Wy =Zs @y, H(T, - Xsa;X;)
(Xsa;h'x; ) 'Ysa, h, y, is randomization consistent
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whenever ¢, , is. It is unbiased under the linear prediction
model in equation (2) when E(g;|{x,, h,|geS},
{l,lgeU})=0 forall keU.

This suggests another alternative definition of calibration
weights: a set of weights, {w, |k € S}, such that,

i. the w, satisfy the calibration equation for {x,|k U}
and,

ii. 7, cap =25 W)y is randomization consistent whenever
t, ¢ is under mild conditions.

That is the definition we will use. This broadened definition
of calibration weighting will prove very helpful when using
calibration to adjust for nonresponse or coverage errors.

It follows from our new definition that Estevao and
Sérdnal’s functional-form calibration is indeed a form a
calibration weighting. Borrowing from econometric theory,
the components of h, that are not linear combinations of
components of x, are called “instrumental variables.”

4. Possibly Nonlinear Calibration

Building on ideas in Deville and Sérndal (1992), we can
generalize the linear form for the calibration weights in
equation (6) to

Wi GEN = a, f(h, q* ), (7

where £ is a monotonic, twice-differentiable function with
F0)=1, f'(0)=1 (f'(0) is the first derivative of f
evaluated at 0), and q" is chosen so that the calibration
equation holds. Unlike the calibration-weight equation

above, the calibration equation itself, > w.x, =T,
remains linear. Note that since f(0)=1, /'(0)=1,
f(hq)=I+hq.

Strictly speaking, there should be an additional symbol
on w, ey (and later on w, [, ) to denote the particular
choice of h, . It has been dropped for convenience.

A solution, q", to equation (7) can often be reached
iteratively. One can start with q'” = 0; thatis, Y3 w"y,,
where w\”=a, f(0). For r=1,2,..., one then sets q"" =

q" " HIZ S g ) T (L -Zs wx,)', and

(’) = akf(hkq(’)) Iteration stops at »  when T, =
Z s w")x, for all practical purposes. One should be aware,
however, that there may not be a set of weights that can be
expressed in the form of equation (7) while satisfying the
calibration equation.

Note that q above equals the q in w, =a,
(1+h,q). A Taylor expansion around zero reveals
f(h,q")=1+h,q" +0,(1/n) under mild conditions, so
Sowi v = Ssw Vi +Op(N/n) = T, [1+0p(1/n)].
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Furthermore, it is not difficult to see that w, g =
w, n[1+0,(1/n)], an equality that proves helpful in
variance estimation.

The most common example in practice of a nonlinear fis
f(h,q)=exp(x,q), where the values of each of the
components of x,, denoted x,,...,xp, are either O or 1.
That is effectively the form of Deming and Stephan’s
(1940) raking weights computed via iterative proportional
fitting. Many have observed that the iterative routine
described above can be used even when the components of
x, are not binary as they are in Deming and Stephan. Note
that the generalized raking calibration weights that result are
always nonnegative.

5. Variance Estimation

Sérndal, Swensson, and Wretman (1989) proposed this
plug-in model variance/randomization mean-squared-error
estimator for 7, Grpg under an arbitrary sampling plan:

Vssw = kz: z [(my, _nknj)/nkj](wkrk)(wjrj)' ®)
eS jeS
The term derives from 7, being “plugged into” vygy In
place of the unknown e, =y, —x, (X, h)x,)"' X, hly, for
randomization-mean-squared-error estimation.

Paralleling arguments in Deville and Sérndal (1992),
Vesw also applies more generally to ¢, ,, Wwith calibration
weights defined by equation (7) with

Te = Vi — Xk(za/ J /J

Jjes

za/ J / (9)

Jjes

This is because w, gpy = W w1 +0,(1/0)], so
2sWi GeN@ = ZsWi_ LN e,+O0p(N/n) =Y sa.e,+Op(N/n).
The last step uses reasoning exhibited in equation (5) with
h; serving in place of the ¢ x .

In their article, Deville and Sérndal effectively replace
the a; in equation (9) with w;, =a, f(h; q’). A different
version is given in Demanti and Rao (2004) where the a;
in the equation are replaced by a;f'(h,q "). This author
noted in a comment accompanying the latter that all three
versions of the 7, are asymptotically identical since f(0) =
f(0)=1 and q" is asymptotically 0. These asymptotic
identities may no longer hold when calibration weighting is
used to adjust for nonresponse as we shall see in the
following section.

Developing asymptotic properties for vy, under
stratified simple random sampling is a simple matter. In this
context, Vygw collapses to

Vgr; = Z(n fn, =11) Y. (1-n,/N,)

keS,
2
x | wr =Y wr/n, |,
J€S,
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where S, denotes the sample of », units in stratum
o(a=1,...,4), and U, the stratum population containing
N, elements.

For a multi-stage sample it makes sense to allow the
possibility that ¢, and ¢, in the prediction model are
correlated when & and j are elements in the same PSU, but
not otherwise. When finite-population correction can be
ignored, the model variance of a calibration estimator is
approximately V, =%, ¢ E [(Zics0) w,g,)’] under mild
conditions, where S(i) is the set of sampled elements in
PSU i, and S’ is the set of PSUs selected in the first stage of
sampling.

The following variance estimator, not strictly equal to
Vesw- Often has good randomization and model-based pro-
perties (when the first-stage selection probabilities are all
small):

A

VsT2 = z (n, /[n, =11

a=1

. (10)

2
2 {Z Z Wk”k]
] JeS, keS,;

n

o

x 9 —[z W, T,

JES, keS(xj

where o denotes a first-stage stratum of PSU’s, n,, the
number of sampled PSU’s in stratum o, S, the set of
sampled PSU’s in o, and S,; the set of subsampled
elements from PSU j of stratum a. There can be many
stages of sampling involved.

It is not hard to show that vy, is asymptotically indistin-
guishable from the jackknife variance estimator:

z ([n, —11/n ){z (tv _CAL(aj)

JES,

tvCAL)Z}’ (1D

where 1, capj) = Zkes Wi Vo and the jackknife repli-
cate calibration weights are

Wk(otj): Wkak(otj) /ak +( z Xm - z W, [am(aj) /am ]ij

melU meS

-1
(z am(otj)h:nxmj ak(aj)h;c’ (12)

meS

where a;,;) =0 when k is in PSU j of stratum
o, @,y =a, when k is not in stratum o at all, and
Aoy = (g / [ny —1])a,  otherwise. The w,.; are
constrained so that >, _¢ Wecajy Xk = Zkev Xi forall oy.

Let S(a+) be the set of elements in stratum o (not
PSU’s like S,), and S(oy) the set of elements in PSU j of
stratum o.. Under mild conditions we assume to hold,
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ZU m z W [am(aj) ]Xm

= (na /[na _])(zs(aj)wkxk _ZS(OH—) WXy /not ) =
b, x,=0.,(N),

m(Otj) m m
and ZS am(otj) m€m ™=

As aresult,
by caL™ 1t caL = zs Wi(oj €k~ zs Wik

= (na /[na - 1])(ZS(11+) Wi€x /not - ZS(otj) Wkek)
+O0,(N/n*'?),

and v, = vep,[1+0,(1/x/n)] when plim,  (nvg,/N*)>
0.

The replicate weights defined in equation (12) do not
require iteration even when the calibration weights are
themselves produced that way. This is a great computation
convenience. It not only saves computer time, it avoids the
possibility that at iterative solution for the w, may exist
while one for the replicate weights does not.

0, (N/n),

=0,(N//n).

6. Unit Nonresponse

6.1 Quasi-randomization and Prediction Modeling

In this section we explore handling unit (whole-element)
nonresponse as an additional phase of Poisson sampling.
That is the essence of a quasi-randomization model. Each
element £ in the original sample, now denoted F, is assumed
to have a probability of response, p,. The probability of
elements & and j jointly responding is p, p;, and whether
element £ would respond (given a vector of covariates) is
independent of whether it is chosen for the original sample.

It is often possible to construct a set of weights so that the
calibration estimator is randomization consistent under the
quasi-randomization model. We are interested here in a
particular way of constructing those weights. To this end,
we assume that the quasi-randomization model is correct.
Each element has attached to it a row vector of auxiliary
variables, x,, for which 7, =3, x ; is known. Finally,
each p, is assumed to have the form:

pi=1/f(h, ), (13)

where ¢ is an unknown column vector, h, is a row vector
with the same dimension as x,, and Y5 a,h, x, /N, where
S now denotes the “subsample” of respondents, is invertible
both for the realized population size, N, and in the
probability limit.

The function f(-) in equation (13) is assumed to be
monotonic and twice differentiable. Its functional form is
known, but the value of the governing parameter, ¢, is not.
When plugged into the calibration-weight equation,
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w, =a, f(h,q), so that the calibration equation itself,
> wXx, =T  holds, f(h,q) implicitly estimates the
inverse of the element response probabilities. Unlike when
calibration is used to correct for Y. a,x differing from T,
due purely to sampling error, f(0) and f'(0) do not need
to be 1 nor does h, ¢ need to be zero.

The most obvious choice for h, when postulating the
response model in equation (13) is x, itself. In a common
example of calibration weighting for nonresponse, the
components of x, are indicator variables: x, =1 whenkis
in group g and zero otherwise. When the groups are
mutually exclusive, calibration weighting is the same thing
as reweighting within post-stratification classes. See, for
example, Sdrndal, Swensson and Wretman (1992, page
585). The prediction model usually underpinning calibration
(the prefix “prediction” is needed to distinguish this model
from the quasi-randomization one) assumes that every
element £ in group g, whether or not it would respond, has a
common mean: £,(y,)=p,. The quasi-random response
model is analogous: p, =1/¢,. The two models are
conceptually very different, however.

When the groups are not mutually exclusive, raking is
one method of determining calibration weights. There are
others depending on the exact form of the assumed response
function f(). The prediction model remains linear,
E.(y,)=x,pB, while the response model that leads to
raking, p, =exp{—x, 6}, does not. Berry, Flatt, and Pierce
(1996) provides an example of using raking to adjust for
nonresponse.

In many applications of calibration weighting the
components of x, are continuous or semi-continuous rather
than dichotomous. In an annual crop survey, for example,
let x,, be the quantity of corn harvested in the previous
census of agriculture by farm £, x,, be the farm’s harvested
wheat, x,, its harvested potatoes, and so forth. The annual
crop survey has an assumed prediction model for farm £’s
planted corn acres, y,,, of the form: y,, =x,B,, +¢,. The
subscript, 1, is corn-specific. There are other survey values
of interest, like planted wheat acres, and potentially assumed
prediction models for each.

The quasi-random response model for the crop survey
depends on assumptions about f(-) and h, in equation
(13) with h, possibly equal to x,. Unlike the prediction
model, the same assumed quasi-randomization model
applies for all survey variables.

Promising choices for f(-) are exp(-) and 1+ exp(),
the latter corresponding to a response probabilities being fit
by a logistic function of h,¢. It may also be reasonable to
assume h, =x2k for A <1. In particular, setting A =0
means that the probability of farm & responding to the
annual crop survey depends only on whether the farm had

137

corn, wheat, or potatoes on the previous census of
agriculture rather than on how much of those crops it had.

In the crop-survey example, the components of x, from
the previous census were the best predictors available for
the corresponding annual survey values before sampling.
Whether farm £ responds to the survey, however, is more
likely a function of the farm’s current planted corn acres, if
any, than on a predetermined proxy for that value. As a
result, placing survey values in h, rather than corres-
ponding census values is tempting. There is a theoretical
problem with this procedure as we shall see.

Given an f(-), the iterative method described in Section
4 will often be able to uncover a row vector q such that
T, =%,a,f(h,q)x,. When that happens, estimating T,
with 7, . =2, Wy, where w, =aq,f(h.q), will have
good properties under the linear prediction model:
Vi =X, B+e, where E(g[{x,, h,,I,|geU})=0 for all
keU,I, =1 if element k is both in the original sample and
responds, 0 otherwise.

Prediction-model unbiasedness is simply a result of the
weights satisfying the calibration equation. Note, however,
that if components of h, come from the survey rather than
x,, the prediction-model assumption that E(g,|h,)=0
can be problematic. At the extreme, consider the case where
one such component is y, itself. Usually, E(g,|y,) is not
0. In the crop-survey example described earlier, y, can be
the annual corn acres planted on farm . Putting this value in
h, makes the associated calibration estimator for corn
prediction-model biased.

When the prediction model is correct (treating
E(gi|{x,, h,, I,|geU})=0 as an integral part of the
model), however, calibration weighting based on any choice
of f(-) will produce estimators with good prediction-
model-based properties. These estimators will also have
good quasi-randomization properties when the response
model in equation (13) is correct for that choice of f(-). In
some sense, one model provides protection against the
failure of the other. See Kott (1994).

As noted, the prediction model is more likely to hold
when h, =x,. Even then, sometimes the ¢, in the model
in equation (2) satisfy E(g|{x,|geU})=0, but not
E(gi|{x,I,|geU})=0; that is to say, the sampling
mechanism - including response — is not ignorable with
respect to the prediction model.

We can factor /, into I,,1,,, where [, =1 if and only
if k is in the original sample, and /,, =1 if and only if £
would respond if sampled. The interested reader can
confirm that calibration weighting provides some protection
against bias if the prediction model in equation (2) holds
when  E(g;[{x,, h,,[,,|geU})=0; that is when the
response mechanism is ignorable with respect to the

Statistics Canada, Catalogue No. 12-001
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prediction model but not necessarily the original sampling
mechanism.

6.2 Quasi-randomization Mean Squared Error
Estimation

Whether or not ¢, ., can reasonably be called
prediction-model unbiased has no effect on its quasi-
randomization-based properties. Note that h,¢ are h, q are
scalar values not vectors. Since 7, =2, q, f(h,q)x,, our
assumptions and the mean value theorem (f(h,¢)=

f(h,q)+ f'(0,)(h,¢—h,q)) reveal
=Y a. f(hd)x, =D a[f'©,)h,(q-)]x,

keS keS
~0,(N /)

for some scalar 0, between each h,q and h,¢. From this
we see that if ¥ a, f'(h,;$);h’x; /N is invertible both for
the realized N and at the probability limit (recall that £ is
monotonic so f” is never zero), then

q-9= {Z a,f'(h;q)hx; } {Tx -2 af (hQ)x, }

Jjes ieS

=0,(1/\/n)

- {[z a/'f'(hjd))j h;'xj :l_l}' |:Tx - z aif(hid))xi:l'
+0,(1/n).

The estimator ¢, ., hasan error of

L, car _Ty = zakf(hkq)yk - z Vi

keS keU

= z a, f(h,q)e, — z €
where
-1
o=yi=% (D f i d)phix; ) Y (hé)p by,
and p, =1/ f(h,¢). The ¢, are again unknown. They have
been design so that Yga,f'(h,¢)hie, = O,(N//n).

Continuing:

tnyAL - Ty

= z akf(hk¢)ek _z e+ z a, {f(hkq) - f(hk¢)}ek

keS keU keS

=D a,f(hd)e, D e +> a f'(ho)h (q-0de,
+ Op(N/n)

= z a, f(h,d)e, — z e +(q- ¢)'z a.f'(h,d)he,
+ Op(N/n)

=2 a4, f(hd)e,— D e+ Op(N/n). (14)

Thus, ¢, -, is quasi-randomization consistent under
mild conditions whenever ¢ = ¥ a,f(h,d)y, is.

To estimate the quasi-randomization mean squared error
of t, ca (ie., the estimator’s randomization mean squared
error under the response model), we first note that the
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probability that elements k£ and j, k # j, are both in the
respondent subsample is n:;. =, p.p;- Let nz =7, P,
and recall that o, =1/m, and 1/p, = f(h,¢). From
equation (14), we see that the quasi-randomization mean
squared error of 7, ., 18 approximately

El[(tLCAL - Ty )2]
zz z (nzj - nan e, /nZ)(ej/nj)

keU jeU
=Y (I-m)e/m,
keU
+ 0 (= mm e /m e /m,). (15)
keU jeU
k#j
If the original sample is Poisson, then v, =

> (w,f -w, )rk2 with

Jjes Jjes

e =V =% |:z ajf'(hjq)h;xj:| z ajf'(hjq)h;yj’ (16)

serves as both a reasonable estimator for prediction-model
variance and quasi-randomization mean squared error under
mild conditions, since w, 1/, and 7, ~e,. A close
relative of the non-intuitive sample residual in equation (16)
can be found in Folsom and Singh (2000). See Kott (2004a)
for a further discussion of v,, in a purely sampling context.
For a general design, we can get close to a good
variance/mean-squared-error estimator with

2 2
vcom :z (Wk - Wk )rk
keS

DIDNCHEET RIS AN
keS jeS
k#j

The right hand side of equation (17) estimates the right hand
side of equation (15) with 7, replacing e¢,. Note that
Yy (I-m)e; /m, in equation (15) is estimated by
> (Wi —w, ) rather than Yg w; (1—, )r7, which would
make v,,, more consistent with vgg,, in equation (8). This
substitution results in a variance estimator with good
prediction-model-based properties when the ¢, are
uncorrelated, and o} =x,&, for some . It can be made
even in the absence of nonresponse.

When the actual sample is multistage, and the first stage
selection probabilities are ignorably small, vy, in equation
(10) can be used as the variance/mean-squared-error
estimator with 7, defined once more by equation (16).

When f'is linear, f'(0) =1, and the 7, in equation (16)
are computed as if there were no nonresponse. The same
holds true for the variance/mean-squared-error estimator
Vsr,. Unfortunately, this f* corresponds to an awkward-
looking response-probability function: p, =1/h, ¢. Fuller,
Loughin and Baker (1994) made these observations for the
case where h, =¢,x,.
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The jackknife, v,, in equation (11) can be computed
with these jackknife replicate weights:

Wk(otj): Wkak(otj) /ak+ ( z Xm - z Wi [am(aj) /am]xmj

meU meS

-1
X { z am(otj)f'(hm q)h:nxmj ak(aj) f'(hk q)h;{ s (18)
meS

an obvious generalization of the jackknife replicate weights
in equation (12). Again when f'(®)=1v, can be
computed as if there were no nonresponse.

7. Coverage Modeling

Folsom and Singh (2000) pointed out that the treatment
of nonresponse through calibration weighting can also be
used to adjust for undercoverage. In the context, the quasi-
random phase as sampling occurs conceptually before the
actual sample is drawn. The population associated with the
sampling frame is assumed to be a Poisson sample from a
hypothetical complete population for which the vector T,
must be known. The frame population becomes F, while the
hypothetical complete population is U. The probability that
element k e U is in F is assumed to be modeled correctly
by equation (13). If the first (from U to F) and second (from
F to S) phases of sampling are independent, then all the
theory developed for using calibration weighting to handle
nonresponse carries over to handling undercoverage.

It should be noted that coverage adjustment through
calibration is a extension of the well-known practice of
coverage adjustment through post-stratification often used
with telephone surveys. As with the post-stratification
special case, one needs quantities for the calibration targets
for U that can be assumed to be free of error or to have very
little mean squared error compared to the calibration
estimators themselves.

Folsom and Singh noted that overcoverage (duplication)
or a combination of under and overcoverage can be handled
with their methodology. The definition of p, in equation
(13) becomes the expected number of times k is in the
frame, which can now exceed 1 due to potential duplication.

Folsom and Singh further suggested that f(-) have the
flexible form:

F(x,0) = U(C-L)exp(x,0)+ LU -C)
(U =C) +(C - Lyexp(x,9)

where L>0,1<U <o, and L < C<U are predetermined
constants. They call this the “General Exponential Model”
or “GEM.” Observe that when C=1,U =, and L =0,
p.=1/f(x,0)=exp(—x,¢). Similarly, when C=2,
U=w, and L=1, p, =[1+exp(x, ¢)]; that is to say, the
probability of coverage (or response) is logistic. The values

, (19)
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L and U serve as bounds on the calibration adjustment,
f(), while C = f(0) is effectively its center.

The authors made the calibration adjustment in GEM
even more flexible by postulating three classes of sampling
units, each with its own set of U, C, and L values. They
proposed its use both for coverage-error and unit-non-
response adjustment

8. A Small Empirical Example

Since the jackknife replicate weights expressed in
equation (18) are new, it is prudent to investigate whether
they actually work with real data. To this end, the author
took the MU281 data from Sirndal, Swensson and
Wretman (1992) and replicated it 20 times (so N = 5,620).
Using stratified simple random sampling, 16 units were
selected from each of the eight unequally-sized strata. The
variable RMTS85 served as y, and P75 as x, in x, =
(1,x,). Each of the 128 sampled units was given a
probability of being in the respondent subsample, S, which
decreased with the size of x,; in particular, p, =
exp(—0.35x, /M ), where M was the population mean
of the x,. In 1,600 simulations, the size of the § ranged
from 78 to 110, with an average of approximately 93.8.

The total 7, was estimated two ways, with 7, |, =
s a,(1+x,q)y, and with 7, pyp =35 a; exp(x, ")y
where q and q“” were respectively selected so that the
calibration equation held. The former was a GREG
estimator, while the latter was a generalized raking esti-
mator. Both estimators were unbiased under the implied
prediction model (y, =x,pB+¢,), but only ¢, .y, was
randomization consistent under the correct respohée model.
The GREG implicitly assumed p, = 1/(¢\"™ +¢{""Vx, )
for unknown ¢ and ¢{""™ .

The small size of the sample relative to the population in
each stratum allowed the ignoring of finite population
correction in variance/mean-squared-error estimation (called
“variance estimation” from now on). Variances were
estimated using, 7, the linearization estimator, vgr,, Iin
equation (10) with 7, defined by equation (16), and, i, the
proposed jackknife, v,, in equation (11) with replicate
weights defined by equation (18). To make the jackknife
computations easier, the 16 samples in each stratum were
randomly assigned to one of four clusters, so that only 32
jackknife replicates had to be computed.

For comparison purposes, a better version of the
linearization variance estimator, labeled vgp,.,, was also
computed with 7  replaced by ¢ =y, — X,
(Zu f'(x;0)px)x,)" Ty f'(x,0)p;X;y;, where ¢ and
p, were known. In practice, ¢, is rarely known, but
computing VsT2(0) is useful here for comparison.
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One should note that computations of 7, and e, were
slightly different depending on whether the variance esti-
mator for 7, , or for ¢, gy, was of interest. For 7, |y,
f'(xj ¢)= f'(xj Q=1 for f, Bxp> f'(xj q(e)@) =
exp(qu(e"p)), and f'(x;0)=1/p,.

Table 1 displays the empirical means (the mean over the
1,600 simulations) of the two estimators for 7, normalized
so that 7, =100. Although both are close ‘to unbiased,
t, un 1S significantly different from 100 at the 0.05 level;
trvaXP is not. This is not surprising, since only the latter is
based on the correct response model.

The variance estimators and empirical mean squared
errors of each estimator were normalized so that the
empirical means of the respective vgr,,,’s were 100.
Neither  vgp,,, had an empirical mean significantly
different from the empirical mean squared error (EMSE) of
the associated estimator. This was a bit disappointing. It
seems that although ¢, |, had a significant empirical bias,
this bias was such a small component of the estimator’s
mean squared error, that the difference between its EMSE
and the empirical mean of vg,., Wwas not significant.

The vgry,, were chosen as benchmarks for the table
rather than the empirical mean squared errors because each
Vsra(e) had roughly half the empirical standard error of the
corresponding EMSE (which itself was the average of 1,600
squared differences) and correlated more strongly with the
variance estimators. The ¢#-values for this part of the table
were also computed with respect to the vgr,,,.-

The two linearization variance estimators had sur-
prisingly large downward biases. Apparently, there was a
tendency for unusually large w, [ and w, yp to cause
associated 7, to be appreciably smaller than e, in absolute
terms. The problems associated with unusually large w, |
and w, g Seem to be more muted with the jackknives.

To speed up the asymptotics of the linearization variance
estimators (i.e., reduce the difference between r, and ¢, ),
an ad-hoc adjustment of v¢;, was computed by replacing
each r with 7 giuseq) =7 /@, Where o, =1-
%, (Ssa, £1(5,9) X)x,) " a f'(x Q) X} = 1+ O,p(1/n).
Observe that under the prediction model with the g,
uncorrelated and E(g}) = o3, E (rkz(adjusted)) ~c;. The near
equality is exact when all the a,f "(x q) and o,
respectively, are equal.

The adjusted vqp, forboth #, | and ¢, .y, remained
biased downward, while the v, were biased upward by a
slightly smaller amount. Although these biases were
significant, they were reasonably small (from 4.5 to 11.2%)
and suggest that the variance estimators may have indeed
been asymptotically unbiased as theoretically demonstrated
in previous sections.

Using vgry,, as an efficient proxy for EMSE, the
empirical mean squared error of ¢, .y, which incorporated
the correct response model, was more than 13% larger than
that of the 7, |, which did not. One should not generalize
broadly based on one data set involving only two calibration
variables, however. See Crouse and Kott (2004) for a
different set of results.

Table 1
Empirical Means of Estimators Based on 1,600 Simulations*

Empirical mean (standard error)

t—value (two-sided significance)

The Estimators for 7,,(7, =100)

I, LN 99.84 (0.06)
Iy Exp 100.04 (0.06)
Variance Estimators for ¢, 1 (Epmp (VsT2(c)) =100)
VsT2 83.59 (1.53)
VST2(adjusted) 95.53 (1.80)
vy 104.69 (2.28)
EMSE 9935 —
Variance Estimators for 7, pxp(Egmp(VsT2(e)) =100)
VsT2 73.12 (1.54)
VST2(adjusted) 88.79 (1.98)
vy 107.00 (2.73)
EMSE 101.21 -
Other Statistics

relvar(vSTz(g)[LIN]) 0.051 —
relvar(vSTz(g)[EXP]) 0.059 —

(VSTZ(e)[LIN] - VSTZ(e)[EXP])

(Eemp (Vs2(e)EXP])

~0.1340 (0.010)

—2.79 (0.02) difference from
0.58 (0.56) T,
—19.96 (<0.0001) difference from
—6.09 (<0.0001) VST2(e)
3.60 (0.0003)
—-0.18 (0.85)
—18.22 (<0.0001) difference from
—8.57 (<0.0001) Ver
4.09 (< 0.0001) ©
0.33(0.74)
—13.87 (<0.0001)

* In four additional simulations, convergence was not reached in 10 iterations for ¢, pyp. They were excluded from the

analysis.
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Whether or not one is better off incorporating the correct
response model in the calibration estimator, if one does so,
then the variance estimators discussed in the previous
section, perhaps with the linearization estimator adjusted as
suggested in this section, appear to be serviceable.

A second set of 1,600 simulations (not displayed) were
done using the same population and stratified sampling
design but with each sampled element given a 70% chance
of being in the respondent sample (the average respondent
sample size was roughly 89.8). In this set of simulations,
both estimators for T, are randomization consistent under
the response model. Consequently, it is not surprising, that
the empirical means of ¢, | and ¢, .y, were virtually
identical (within 0.01% of each other) as were their
empirical mean squared errors (within 1% of each other).
The empirical means of each pair of variance estimators
(e.g., varg, for ¢, v and 7, .y,) were likewise very
close (within 1% of each other). The relative bias of the
adjusted vy, (compared to varg,,) was —1.3% when
estimating the variance of ¢, ; and -2.2% when esti-
mating the variance of 7, .,,. The relative biases of the
unadjusted linearization variances were —9.0% and—10.3%,
respectively. The relative bias of both jackknives was 3.6%.

9. Discussion

9.1 Estimating a Response Model Explicitly

When faced with unit nonresponse, many have attempted
to estimate the element probabilities of response, p, =
1/f(h,¢), directly. This method requires one to have
information on h, for every element in the sample whether
it responded to the survey or not, but h, need not have the
same dimension as X,. The direct-adjustment method is
generally not available for handling coverage errors.

Fuller (2002) noted that there can be an extra term in the
quasi-randomization mean squared error of ¢, gppg =
Ysa v + (T, —Xs aj'xj) (s Cjaj'x;'x*j)_lzs Cka:X;cxk’
where S is the respondent subsample, a, = a,[1+ f(h,q)],
and q is a consistent direct estimator for the quasi-random-
ization model parameter, ¢. This does not imply that direct
estimation of the response model based on a given f(-) and
h, is less efficient than analogous calibration when h, has
the same dimension of x,. See Kim (2004) for a suggestion
otherwise. Nevertheless, the convenience of incorporating
nonresponse adjustment into calibration is appealing when
variance estimates need to be produced.

A reasonable compromise is to choose the form of f(-)
and h, by modeling the response behavior of the entire
sample and then estimating the parameter of f(-) implicitly
through calibration. This compromise also overcomes a
striking weakness of using calibration weighting to adjust
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for nonresponse (as well as for coverage errors). The
choices for f(-) and h, are motivated primarily by plausi-
bility and convenience and not by a statistical analysis of the
data.

9.2 Response Homogeneity Groups

To control the magnitude of the weight adjustment due to
nonresponse, Little (1986) recommended that one estimate
q explicitly and then divide the sample into C mutually
exclusive groups based on the sizes of the fitted f(h, q)
values. One then computes the adjusted weight for each
element & in group ¢ as with post-stratification: w, ,p; =
(Zre) Wy ! Zsey W)W, where F is that part of the
original sample in group ¢, S(c) is the subsample of F{c) that
respond, and w;, is the sampling weight assigned to element
k after sampling but before quasi-random subsampling. This
approach assumes that each element in a group has
(roughly) the same probability of response, hence the term
“response homogeneity group.”

An alternative way of incorporating fitted f'(h,q)
values into the estimation based on methodology developed
in the text follows. Divide the fitted values into P groups
based in their sizes, where P is again the dimension of x,,
and let d, be a row vector of indicator variables for the P
cells. By setting each w, = g[1+(T,-Xsa;x;)x
(Xsadx; )"'d}], one computes a set of weights for the
respondent subsample that, unlike {w, ,,} above, satisfies
the calibration equation for the respondent sample. Because
of the nature of d,, this linear method returns the same set
of calibration weights as fitting w, = a, exp(d,f) would —
if both produce a set of weights. Note that since calibration
weights can be negative with the linear method, it may be
able to find a set that the generalized raking method cannot.
The linear method effectively scales the a, —value for every
element in the same group by a fixed amount. Thus, it may
not produce surprisingly small or surprisingly large weights
when the dimension of x, is small compared to the sample
size.

9.3 Breaking Up Sample and Nonresponse
Calibration

In the previous section we noted that it is possible for
components of h, in equation (13), the quasi-random
response model, to be unknown before enumeration. When
such an h, is used in calibration, it might no longer to
reasonable to assert that the resulting ¢, ., is prediction-
model unbiased. This is particularly troublesome when
nonresponse is modest compared to the sample size. An
intriguing idea is to calibrate in two phases. The first phase,
sample calibration, adjusts for the difference between T,
and Y, a,x,, and would not include any components in h,
unavailable at the time of sampling. The second phase,
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nonresponse calibration, adjusts for the difference between
Yra;X, and Ygax, and would include component
variables only available after the respondent subsample is
enumerated.

A more thorough analysis of this idea must wait for
another time.

9.4 Work at NASS

The National Agricultural Statistics Service (NASS) used
variants of the Fuller et al. (1994) approach for handling
undercoverage in the 2002 Census of Agriculture (see Fetter
and Kott 2003) and for adjusting an agricultural economics
survey with large nonresponse to match totals from more
reliable surveys (see Crouse and Kott 2004). In this
approach, f(-) has the form:

L when x,6<L
f(x,¢) =49x,6 when L<x,6<U (20)
U when x,6>U,

which truncates linear calibration at pre-specified values, L
and U, to control the size of the weight adjustment. Note
that when f()=U or L, f'(-)=0. Unlike the calibration
adjustment in equation (19), f(-) in equation (20) is not
twice differentiable at L or U. This does not cause a problem
in practice.

The agency’s original justification for calibration in these
contexts was based on prediction-modeling. Equation (20) is
simple to implement and appears to produce weights within
an acceptable range more often than readily available
alternatives.

NASS is investigating the following questions: How
sensitive is ¢, ., to the choice of f(-) in practice? Would
a different choice for f(-) result in less bias, and if so,
would the reduction in absolute bias translate into a lower
mean squared error? What would be the effect of replacing
some component of the vector of calibration variables with a
better predictor of nonresponse/undercoverage?
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