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Sample Size Calculation for Small-Area Estimation

Nicholas Tibor Longford '

Abstract

We describe a general approach to setting the sampling design in surveys that are planned for making inferences about small
areas (sub-domains). The approach requires a specification of the inferential priorities for the areas. Sample size allocation
schemes are derived first for the direct estimator and then for composite and empirical Bayes estimators. The methods are
illustrated on an example of planning a survey of the population of Switzerland and estimating the mean or proportion of a

variable for each of'its 26 cantons.

Key Words: Efficiency; Inferential priority; Sample size allocation; Small-area estimation.

1. Introduction

Sampling design is a key device for efficient estimation
and other forms of inference about a large population when
the resources available do not permit collecting the relevant
information from every member of the population. In this
context, efficiency is interpreted as the optimal combination
of a sampling design and an estimator of a population quan-
tity 6. By optimum we understand minimum mean squared
error, although the development presented in this paper can
be adapted for other criteria. The pool of the possible
sampling designs is delimited by the resources, and these
are usually expressed in terms of a fixed sample size. This is
not always appropriate because the designs may not entail
identical average costs per subject. However, within a
limited range of designs, this issue can be ignored.

The problem of setting the sampling design for the
purpose of efficient estimation of a single quantity is well
understood, and solutions are available for many commonly
encountered settings. Most of them involve a univariate
constrained optimisation problem. Setting the sampling
design for estimating several quantities represents a quan-
tum leap in complexity, because the problem involves
several factors, typically one for each quantity. It is essential
to optimise the design simultaneously for all the factors,
because the goals of efficient inference about the target
quantities may be in conflict. For example, in small-area
estimation, a more generous allocation of the sample size to
one area has to be compensated by a less generous allo-
cation to one or several other areas.

Small-area statistics have become an important research
topic in survey methods in the last few decades (Fay and
Herriot 1979; Platek, Rao, Sérndal and Singh 1987; Ghosh
and Rao (1994), Longford 1999; and Rao 2003), stimulated
by increasing interest of government agencies, the adver-
tising and marketing industry and the financial and in-
surance sector. At present, many large-scale surveys are

designed for estimating national quantities but, sometimes
almost as an afterthought, are used for inferences about
small areas. This would be appropriate if the sampling
designs optimal for small-area and national inferences were
similar. We illustrate in this paper that this is not the case
and that sampling design can be effectively targeted for
small-area estimation, taking into account the goal of
efficient estimation of national quantities. To avoid the
trivial case, we assume that the areas have unequal popu-
lation sizes. We apply the methods to the problem of
planning inferences about the 26 cantons of Switzerland,;
their population sizes range from 15,000 (Appenzell-
Innerrhoden) to 1.23 million (Ziirich). The population of
Switzerland is 7.26 million.

Literature on the subject of planning surveys for small-
area estimation is rather sparse. An important contribution is
Singh, Gambino and Mantel (1994). In one of the ap-
proaches they discuss, the planned sample size for the
Canadian Labor Force Survey is split into two parts. One
part is allocated optimally for the purpose of national
(domain) estimation and the remainder optimally for small-
area estimation. For the latter goal, equal subsample sizes
are allocated to each area when the areas have equal within-
area variances, the finite population correction can be
ignored and the areas have equal survey costs per subject,
but also when the targets of inference are area-level means.
When the targets are population totals, equal allocation to
the areas is not efficient, because it handicaps estimation for
more populous areas. Even when proportions or rates (per-
centages) are estimated, the within-area variances depend on
the population proportion, although the dependence is weak
when all the proportions are distant from zero and unity. For
more recent developments in sampling design for small-area
estimation, see Marker (2001).

The next section describes the proposed approach based
on minimising the weighted sum of the sampling variances
(mean squared errors) of the planned estimators, with the
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weights specified to reflect the inferential priorities. It is
applied first to direct estimation of the area-level quantities.
Then it is extended to incorporate the goal of national
estimation, and, finally, to composite estimation in section
3. The concluding section 4 contains a discussion.

The remainder of this section introduces the notation
used in the rest of the paper. We assume that area-level
population quantities 0,, d =1, ..., D, are estimated by
6 , With respective mean squared errors (MSE) v, that are
functions of the within-area subsample sizes n,;v, =
v,(n,). The overall sample size is denoted by n, and is
assumed to be fixed. The population sizes are denoted by
N (overall) and N, (for area d ). For brevity, we denote
n=(n, .. n D)T. Most population quantities 0 are
functions of a single variable, such as its mean, total, and the
like. The variable may be recorded in the survey directly, or
constructed from one or several such variables. Although
our development is not restricted to such quantities, the
motivation is more straightforward with them. An estimator
of 0, is said to be direct if it is a function of only the
variable concerned on subjects in area d.

We assume that each direct estimator considered is
unbiased. This is not particularly restrictive, as most direct
estimators are naive estimators or are closely related to
them. We assume that the sample sizes for the areas are
under the control of the survey designer. This is the case in
stratified sampling designs in which the strata coincide with
the areas. In section 4, we discuss sampling designs in
which such control cannot be exercised; they are
particularly relevant for divisions of the country into many
(hundreds of) areas.

2. Optimal Design for Direct Estimation

We resolve the conflict between the goals of efficient
estimation of the area-level quantities 6, by choosing the
area-level sampling design that minimises the weighted sum
of the sampling variances (MSEs),

D
min, > Pv,, (1)
-1
subject to the constraint of fixed overall sample size
n=n'1,;1, is the vector of unities of length D. The
coefficients P, are called inferential priorities. Greater
value of P, (in relation to the values P,, d'# d) implies a
greater urgency to reduce v,, because the contribution of
area d to the sum in (1) in magnified more than for the
other areas.

The optimisation problem in (1) is solved by the method
of Lagrange multipliers, or simply by substituting
n,=n—n,—..—np, so that the problem then involves
D -1 functionally unrelated variables. The solution
satisfies the condition

ov
P, —% = const.
ny

An analytical expression for the optimal subsample sizes
n, cannot be obtained in general, but when v, =7 /n,,
as in simple random sampling within areas, the solution is
proportional to G, \/E , thatis,

nT:n Gd\/g .
d oi\JB +..+0,\Py

When the within-area variances o coincide, o; =...=
o}, =c", this simplifies further; the optimal sample sizes
are proportional to \/E and do not depend on &°.

In most contexts, it is difficult to elicit a suitable set of
priorities P,, and so it is more constructive to propose a
convenient parametric class of priorities P = (P, ..., P,)’
and illustrate their impact on the sample size allocation. We
propose the priorities P, = N! for 0<¢g <2. For ¢=0,
inference is equally important for every area. With in-
creasing ¢, relatively greater importance is ascribed to
more populous areas. When v, =c’/n,, the optimal
sample size allocation for ¢ =2, n} =nN, /N, is propor-
tional to the population sizes in the areas, and so the same
sampling design is optimal for national and area-level
inferences. For ¢ >2 the sample size allocation is even
more generous to the most populous areas, at the expense of
less populous areas. As this is counterintuitive in the context
of small-area estimation, the choice of an exponent g >2 is
probably never appropriate. A negative priority exponent ¢
would be suitable for a survey that aims to focus on the least
populous areas. Of course, such a design is very inefficient
for estimating the national quantity 0, especially when the
areas have widely dispersed population sizes.

The inferential priorities P, may be functions of
quantities other than N,. For example, the sizes of certain
subpopulations of focal interest, such as an ethnic minority
in the area, may be used instead of N,, P, may be defined
differently in the country’s regions, or the formula for them
may be overriden for one or a few areas.

In some publications of survey analyses, an estimate is
reported only when it is based on a sufficiently large sample
size or its coefficient of variation (the ratio of the estimated
standard error and the estimate) is smaller than a specified
threshold. If a ‘penalty’ for not reporting a quantity is
specified, it can be incorporated in the definition of the
inferential priorities. The difficulty that may arise is that the
objective function in (1) is discontinuous and the standard
approaches to its optimisation are no longer applicable. The
penalty has to be set with care. If it is too low it is
ineffective; if it is set too high the solution will prefer
reporting estimates for as many areas as possible, but each
with sample size or precision that narrowly exceeds the set
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threshold. See Marker (2001) for an alternative approach to
this problem.

Figure 1 illustrates the impact of the priority exponent ¢
on the sample size allocation for a survey planned in
Switzerland, with the aim of estimating the population
means of a variable in its 26 cantons, assuming a common
within-canton variance o. The planned overall sample size
is n=10,000. The curves in either panel connect the
optimal sample sizes for each exponent ¢; they are drawn
on the linear scale (on the left) and on the log scale (on the
right). The population sizes are marked on the horizontal bar
at the bottom of each plot. On the log scale, the curves are
linear. The log scale is useful also because the population
sizes of the cantons are more evenly distributed on it.

For ¢ =0, each canton is allocated the same sample
size, 10,000/26 =385, and for g=2 the allocation is
proportional to the canton’s population size. For inter-
mediate values of ¢, sample sizes of the least populous
cantons are boosted in relation to proportional allocation
(¢ =2), at the expense of reduced allocation to the most
populous cantons. The subsample sizes depend very little on
q for cantons with population of about 250,000,
approximately 3% of the national population size.

2.1 The Priority for National Estimation

As the canton-level subsample sizes differ from the
proportional allocation for priority exponent g <2, optimal
canton-level estimation is accompanied by a loss of
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efficiency of the national estimator. Consider the stratified
estimator

of the national mean © of a variable, where 6, are
unbiased estimators of the within-canton means of the same
variable. Assuming stratified sampling with simple random
sampling within strata (cantons), with 0 , set to the within-
stratum sample means,

Var(é)—Li N—dz(l—f Yol
N? d=1 Ny e

where f, =n, /N, is the finite population correction.

Figure 2 displays the function that relates the standard
error +/var(0) to the priority exponent ¢, calculated
assuming c” =100. The standard error is a decreasing
function of ¢; it decreases more steeply at ¢ =0 than at
q =2, where it is quite flat. For ¢ =2, the goals of canton-
level and national estimation are in accord, and
\lvar(é) =0.100. For ¢=0, «lvar(é) =0.143; in this
setting, optimality of the small-area estimation exerts a
considerable toll on national estimation, equivalent to
halving the sample size (0.143/0.100 =+/2). For negative
g, thetoll is even greater.

1,000 2,000
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I

200
I

Subsample size (cantons)
100
I

o _|
e}
Qi a=2 E P RS
| | | | | | |
10 20 50 200 500
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Figure 1. The sample size allocation to the Swiss cantons for a range of priority exponents g. The population sizes of the
cantons are marked on the horizontal bar at the bottom of each plot.
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Figure 2. The standard error of the national estimator © of the
mean of a variable, as a function of the exponent ¢
for priorities of the canton-level estimation.

Thus, the need for efficiency of the national estimator
can be addressed by increasing the priority exponent. For
example, the parties with rival inferential interests may
negotiate about how much loss in efficiency of 6 can be
afforded, and the priority exponent would then be set to
match this loss. Alternatively, this loss may be considered
by applying the optimal design for area-level estimation. If
it is regarded as excessive, ¢ is increased until a balance is
struck between the losses of efficiency for national and
small-area estimation.

An unsatisfactory feature of these approaches is that they
compromise the original purpose of the priorities P — to
reflect the relative importance of the inferences about the
distinct small areas. This drawback is addressed by
associating 0 with a priority, denoted by G, relative to
small-area estimation, and considering optimal estimation of
the set of D area-level targets 0, together with the national
target 0. Thus, we minimise the objective function

iEivd (ng)+GP,v(n),

d=1

where v=var() and P, =P'1,. The factor P, is
introduced to ameliorate the effect of the absolute sizes of
P, and the number of areas on the relative priority G. The
priorities P, can be interpreted only by their relative sizes,
as, for any constant ¢>0, P, and c¢P, correspond to
identical sets of priorities for small-area estimation in (1).

When the sampling design within each area is simple
random and 0 is the standard stratified estimator, the
minimum is attained when

’

2
G, —% = const,
d

where P] = P, + GP_N; / N*. The optimal sample sizes for
the areas are

’
n,=n S
.= .
o, /B +...4+0,/P)

This corresponds to an adjustment of the priorities P, by
GP_N./N’. Note that this adjustment is neither additive
nor multiplicative. The priority is boosted more for the more
populous areas. As a consequence, the area-level subsample
sizes are dispersed more when the relative priority for
national estimation is incorporated and the area-level
priorities are unchanged. The finite population correction
has no impact on 7, because it reduces each sampling
variance v, and v by a quantity that does not depend on n.

The priority G can be set by insisting that the loss of
efficiency in estimating the national quantity 6 does not
exceed a given percentage or that at most a few (or none) of
the absolute differences |P; — P,| or log-ratios [log (P, / P,)|
are very large. However, the analytical problem is simple to
solve, so the survey management can be presented by the
sampling designs that are optimal for a range of values of G.

The dependence of the subsample size on the exponent
g and relative priority G is plotted in Figure 3 for the least
and most populous cantons, Appenzell-Innerrhoden and
Ziirich, in the respective panels A and C. Panels B and D
plot the same curves as A and C, respectively, on the log
scale. Ignoring the goal of national estimation corresponds
to G =0 and ignoring the goal of small-area estimation to
very large values of G. Throughout, we assume that
n=10,000 and o =100, common to all cantons.

For each exponent ¢ <2, the sample-size curve n,(G)
decreases for the less populous and increases for the more
populous cantons toward the proportional representation
n, =nN, /N, which corresponds to ¢ =2. On the linear
scale, the increase is quite rapid for Ziirich for small ¢ and
G, whereas the reduction for Appenzell-Innerrhoden is
more gradual. As the relative priority G is reduced, the
excess sample size is re-distributed from Ziirich (and a few
other populous cantons) to several less populous cantons.

Figure 4 plots the ‘national’ standard error ./var (é)
under the optimal sample allocation for an array of values of
g and G. The diagram shows that the standard error of 0
is reduced radically by a small increase of G in the vicinity
of G =0, whereas for larger values of G it is affected only
slightly. For each G, higher priority exponent ¢ is
associated with higher precision of .

Statistics Canada, Catalogue No. 12-001



8 Longford: Sample Size Calculation for Small-Area Estimation

Appenzell-Innerrhoden Log scale
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Figure 3. The optimal sample sizes for the direct estimator éd for combinations of priority exponents g and relative
priorities G for the least and most populous cantons.

3. Composite Estimation

0.14

The resources available for the conduct of a survey are
used most effectively by the optimal combination of a
sampling design and estimator(s), and so the sampling
design and (the selection of) the estimator should be, in
ideal circumstances, optimised simultaneously. This prob-
lem is difficult to solve formally in most settings, although
some estimators are more efficient than their competitors in
a wide range of designs. Composite estimators (Longford
1999, 2004) are one such class. They are convex combina-
tions of the direct small-area and national estimators,

0.12 0.13

Standard error

0.11

0.10

T T
0 100 200 300 400
Relative priority G ~ N A
6,=(01-b,)6,+b,0, )
Figure 4. The standard error of the national estimator
for the allocation that is optimal under an
array of priorities given by ¢ and G.
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with area-specific coefficients b, that are estimates of the
optimum. The composition 0, exploits the similarity of the
areas; it is particularly effective when the areas have a small
between-area variance op,=D"'Y, (0,-0)°, where
0=D"y,0,. This variance is defined over the D pop-
ulation quantities 6, and is unaffected by the sampling
design. In practice, o3, has to be estimated. When planning
a survey, estimates from other surveys of the same or a
related population have to be used, and the uncertainty
about o;, addressed. This can be done by sensitivity anal-
ysis, exploring the optimal designs for a range of plausible
values of o7,

If the deviations A, =0, —0 were known the optimal
coefficient b, in (2) would be, approximately, b, = o>/
(o> +n,A}). As A, is not known (otherwise 0, would be
estimated with high precision by 0+ A,), we replace A
by its average over the areas, equal to o}, yielding the
coefficient b, =1/(1+n,m,), where ®, =c;/c, is the
variance ratio. The variance o, also has to be estimated,
but when there are many areas it is estimated with precision
much higher than most A’ are.

If the coefficients b, are estimated with sufficient preci-
sion the composite estimator 6, is more efficient than the
two constituent estimators 6, and 6. Ignoring the un-
certainty about the within- and between-area variances, as
well as the national mean 0 and the correlation between the
national and area-level (direct) estimators, the average MSE
of 0, is

oy

aMSE® ,)=——28 3
) 1+ n,0, ®)

where ‘aMSE’ denotes the MSE in which A’ is replaced by
o}, its average over the areas. The aMSE in (3) is also an
approximation to the conditional variance of the EBLUP
estimator of the area-level mean based on the two-level
(empirical Bayes) model (Longford 1993, Goldstein 1995,
Marker 1999, and Rao 2003). See Ghosh and Rao (1994)
for an authoritative review of application of these models to
small-area estimation.

For the composite estimators of the area-level means, we
search for the sample allocation that minimises the objective
function

D
> P,aMSE(®,) + GP,v.

d=1
The solution satisfies the condition

2 2
P Ni o = const. 4

q,. 2
Niocgzo,
+ a2 2

N~ n;

(1+n,0,)

This equation does not have a convenient closed-form
solution, but iterative schemes can be applied to solve it.
The value of n, determines the remaining sample sizes n,,
and so optimisation corresponds to a one-dimensional
search. If the provisional sample sizes n based on a set
value of n, are too large, n' 1, > n, n, is reduced and the
other sample sizes n, are calculated by solving (4). Note
that the solution depends on the variances o and c3. The
problem is simplified somewhat when the areas have a
common variance 6° =G, =...=G,,. Then the solution of
(4) depends on the variances only through the ratio
w=o0;, /6" because c” is a multiplicative factor and has
no impact on the optimisation.

By way of an example, suppose ¢ =1 and G =10 in
planning a survey of the population of Switzerland with
n=10,000, and ®=0.10 is assumed. As the initial
solution, we use the allocation optimal for direct estimation
with the same values of ¢ and G. One iteration updates the
sample size for each canton and, within it, the updating for
all but the arbitrarily selected reference canton d =1 is also
iterative. The reference canton’s provisional subsample size
determines the current value of the constant on the right-
hand side of (4). Then equation (4) is solved, iteratively, for
each canton d =2, ..., D, using the Newton method. In the
application, the number of these iterations was in single
digits for each canton. Finally, the subsample size for the
reference canton is adjusted by the 1/D -multiple of the
difference between the current total of the subsample sizes
and the target total n. The updating of the cantons is itself
iterated, but only a few iterations are required to achieve
convergence; for example, all the changes in the subsample
sizes were smaller than 1.0 after three iterations, and smaller
than 0.01 after eight iterations. The convergence is fast
because the starting solution is close to the optimum; the
largest difference between the two subsample sizes is for
Ziirich, 20.0 (from 1199.5 at the start to 1219.5 after eight
iterations). For Appenzell-Innerrhoden, the sample size is
reduced from 81.6 to 73.4. Change by less than unity takes
place for five cantons with population sizes in the range
228,000-278,000. Note that the subsample sizes would in
practice be rounded, and possibly adjusted further to
conform with various survey management constraints.

No priority for national estimation

If national estimation has no priority, G =0, equation (4)
has the explicit solution

. no+D NI? 1
ny @
o U? o

B
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where U'” = N2 + ...+ N{/>. This allocation is related to
the allocation nz,, d=1, .., D, that is optimal for direct
estimation of 0, by the identity

. DN4'?
nd:n;+l %—1.
ol UY

Hence, when ¢ >0, the allocation optimal for composite
estimation is more dispersed than for direct estimation. The
break-even population size is N, =(U'"/ D)*4; areas
with population sizes N, < N; have smaller subsample
sizes for composite than for direct estimation, and areas
with greater population sizes have greater subsample sizes.
(For ¢ =0, n; =n/D). The amount of extra dispersion is
inversely proportional to .

For ® =0, the equations for the optimal sampling design
lead to a singularity. In this case, each 0, is estimated
efficiently by the national estimator 6, and so the design
optimal for composite estimation coincides with the design
that is optimal for the national estimator (1, =nN,/N).
For ¢ >0, the optimal allocation yields negative sample

sizes n, when
@
N, <{ v } . 5)

no+ D

This (formal) solution is not meaningful. A negative
solution should come as no surprise because the aMSE in
(3) is an analytical function for n, >—-1/®,. For small
® >0, the aMSE is a shallow decreasing function of the
sample size n,. A negative n, indicates that a (small)
canton is not worth sampling because of its low inferential
priority P,. Although additional sample size for a more
populous canton d' may yield a smaller reduction of aMSE
than it would for a small canton d, its impact is magnified
by the larger priority P,..

Positive priority for the national mean

The aMSE in (3) ignores the uncertainty about the
national mean 0, and this becomes acute when one of the
cantons is not represented in the sample. This deficiency of
(3) can be compensated for by setting the relative priority
G to a positive value.

Figure 5 summarises the impact of the relative priority
G and the priority exponent ¢ on the optimal sample sizes
of the least and most populous cantons, together with canton
Thurgau which has the 13" (median) largest population size,
228,000. Each setting of ¢, indicated in the title, and G,

Statistics Canada, Catalogue No. 12-001
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using different line types, is represented for a canton by a
graph of the optimal sample size as a function of the
variance ratio ®. The limit of this function for ® — +co,
equal to the sample size optimal for direct estimation, is
marked by a bar at the right-hand margin of the panel. For
® =0, the sampling design optimal for estimation of the
national mean 0 is obtained. Panels A and B at the top are
for the overall sample size n=10,000 and panels C and D
for n=1,000.

The diagram shows that the optimal sample sizes are
nearly constant in the range e (', +©); ® increases
with ¢, G and 1/n. This is a consequence of the relatively
large sample size n, which ensures that the subsamples of
most cantons are too large for any substantial borrowing of
strength across the cantons to take place, unless the cantons
are very similar (o< ). Most shrinkage coefficients
b, =1/(1+n, ®) are very small. When n=10,000 is
planned, for small values of ®, the optimal sample size
increases steeply for the least populous canton and drops
precipitously for the most populous canton. Dispersion of
the optimal sample sizes increases with ¢ and G,
converging to the optimal allocation for estimating the
national mean 6, which corresponds to = 0. In contrast,
the optimal sample sizes are discontinuous at =0 when
G =0; the solutions diverge to —co for the least populous
cantons.

In panels C and D, for n=1,000, the dependence of the
sample sizes on o persists over a wider range of ®
because there is a greater scope for borrowing strength
across the cantons with the smaller sample sizes. The
optimal sample sizes are not monotone functions of ®; for
the least populous cantons there is a dip at small values of
®. The dip is more pronounced for small G and large ¢,
that is, when the disparities of the cantons’ priorities are
greater and inference about the national mean is relatively
unimportant. This phenomenon, somewhat exaggerated by
the log-scale of the vertical axis, is similar to the case
discussed for G =0. Because of the disparity in the
priorities P,, a small reduction of aMSE for a more
populous canton is preferred to a greater reduction for a less
populous canton. The dip is present also when n =10,000,
but it is so shallow and narrow as to be invisible with the
resolution of the graph. Note that the horizontal axes in
panels C and D have three times wider range of values of ®
than in panels A and B.

In the context of the planned survey, it was agreed that
o is unlikely to be smaller than 0.05. Therefore, the sample
size calculations could be based on the direct estimator.
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Figure 5.The sample sizes optimal for composite estimation of the population means for three cantons for a range of
variance ratios o, priority exponents ¢ =0.5 and ¢=1.0 and relative priorities G=1, 10 and 100. The
overall sample sizes are 10,000 (panels A and B) and 1,000 (panels C and D).

4. Discussion

The method described in this paper identifies the optimal
design for the artificial setting of stratified sampling with
simple random sampling within homoscedastic strata.
Specifying the priorities for small-area and national esti-
mation is a key element of the method. In practice, the
priorities may be difficult to agree on, and some of the
assumptions made may be problematic, the assumptions of
equal within-stratum variances and simple random sampling

in particular. The method can be extended to more complex
estimators, but then the values of further parameters are
required. A more constructive approach regards the optimal
sampling design for the simplified setting as an approx-
imation to the sampling design that is optimal for the more
realistic setting. Even if the optimal sampling design were
identified, it could not be implemented literally, because of
imperfections in the sampling frame and (possibly) infor-
mative and unevenly distributed nonresponse. However, the
approach can be applied, in principle, to any small-area
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estimator that has an analytical expression for the exact or
approximate MSE. This includes all estimators based on
empirical Bayes models, to which the composite estimator
is closely related. Sampling weights can be incorporated in
sample size calculation if they, or their within-area
distributions, are known, subject to some approximation, in
advance. Sample size calculation for a single (national)
quantity entails the same problem.

Although the numerical solution of the problem for
composite estimation with a positive priority G is simple
and involves no convergence problems, it is advantageous
to have an analytical solution, so that a range of scenarios
can be explored. The proximity of the solutions for the
direct and composite estimation suggests that the allocation
optimal for direct estimation may be close to optimum also
for composite estimation with realistic values of ®, say,
o >0.05.

Various management and organisational constraints are
another obstacle to the literal implementation of an analyt-
ically derived sampling design. In household surveys, it is
often preferable to assign an (almost) full quota of addresses
to each interviewer, and so sample sizes that are multiples of
the quota are preferred. These and numerous other con-
straints can be incorporated in the optimization problem,
although they are often difficult to quantify or the designer
may not be aware of them because of imperfect communi-
cation. Improvisation, after obtaining the sampling design
that is optimal for a simpler setting, may be more practical.
Also, priorities, or expert opinion about them, may change
over time, even while the survey is being conducted and
analysed. Estimates that are associated with standard errors
or coefficients of variation greater than a specified threshold
are often excluded from analysis reports. Intention to do this
can be reflected in sample size calculation by regarding 6
as the estimator of 0,, that is, by setting the associated
MSE to the corresponding aMSE o7 + var(0) or to
another (large) constant.

Although we propose a particular class of priorities for
the small areas, no conceptual difficulties arise when
another class is used instead. It may depend on several
population quantities, not only the population size. In
principle, the priorities can also be set for the areas individ-
ually, although this is practical only when the number of
areas is small. The formula-based and individually set
priorities can be combined by adjusting the priorities, such
as P, =N, for a few areas to reflect their exceptional role
in the analysis.

Sensitivity analysis, exploring how the sampling design
is changed as a result of altered input, is essential for
understanding the impact of uncertainty about the estimated
parameters (the variance ratio ® in particular) and the
arbitrariness, however limited, in how the priorities are set.
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For this, an analytically simple solution that can be executed
many times, for a range of settings, is preferred to a more
complex solution, the properties of which are more difficult
to explore.

Multivariate composite estimators exploit the similarity
not only across areas, but also across (auxiliary) variables,
time, subpopulations, and the like (Longford 1999 and
2005). The aMSEs of these estimators depend on the scaled
variance matrix €Q, the multivariate counterpart of .
Sample size calculation for this method is difficult to
implement directly because both variances and covariances
in Q are essential to the efficiency of the estimators. A
more constructive approach matches the matrix Q with a
ratio o that can be interpreted as the similarity of the areas
after adjusting for the auxiliary information, as in empirical
Bayes methods.

When control over the sample sizes allocated to the areas
is not possible sample size calculation is still meaningful as
a guide for how the sample sizes should be allocated on
average. In general, a unit reduction of the sample size is
associated with greater loss of precision than a unit increase.
Therefore, designs in which the sampling (replication)
variance of the subsample sizes n,(d fixed) is smaller are
better suited for small-area estimation. In designs with large
clusters, such variances are large because, at an extreme, an
area may not be represented in the survey in some
replications and may be over-represented several times in
others. Using smaller clusters is in general preferable for
small-area estimation if this does not inflate the survey costs
and a fixed overall sample size can be maintained.
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