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Design Effects for the Weighted Mean and Total Estimators 
Under Complex Survey Sampling 

Inho Park and Hyunshik Lee 1 

Abstract 
We revisit the relationship between the design effects for the weighted total estimator and the weighted mean estimator 
under complex survey sampling. Examples are provided under various cases. Furthermore, some of the misconceptions 
surrounding design effects will be clarified with examples. 

                                                           
1. Inho Park and Hyunshik Lee, Westat, Inc. 1650 Research Blvd., Rockville, MD 20850, U.S.A. E-mail: InhoPark@westat.com. 
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1. Introduction  
The design effect is widely used in survey sampling for 

developing a sampling design and for reporting the effect of 
the sampling design in estimation and analysis. It is defined 
as the ratio of the variance of an estimator under a complex 
sampling design to that of the estimator under simple 
random sampling with the same sample size. An estimated 
design effect is routinely produced by computer software 
packages for complex surveys such as WesVar and 
SUDAAN. It was originally intended and defined for the 
weighted (ratio) estimator of the population mean (Kish 
1995). However, a common practice has been to apply this 
concept for other statistics such as the weighted total 
estimator often with success but at times with confusion and 
misunderstanding. The latter situation occurs particularly 
when simple but useful results derived under a relatively 
simple sampling design are applied to more complex 
problems. In this paper, we examine the relationship 
between the design effects for the weighted total estimator 
and the weighted mean estimator under various complex 
survey sampling designs. In section 2, we briefly review the 
definition of the design effect and its practical usage while 
discussing some of the misconceptions surrounding design 
effects for the weighted total and mean estimators. 
Subsequently, in section 3, we analyze the difference 
between the design effect for the weighted total estimator 
and that for the weighted mean estimator under a two-stage 
sampling design followed by a discussion regarding the 
design effects under various two-stage sampling designs and 
some more general cases in section 4. We try to clarify 
some of the misconceptions with these examples. Finally, 
we summarize our discussion in section 5. 

 

2. A Brief Review on Definition and Use of Design 
Effect in Practice  

A precursor of the design effect that has been 
popularized by Kish (1965) was used by Cornfield (1951). 
He defined the efficiency of a complex sampling design for 
estimating a population proportion as the ratio of the 
variance of the proportion estimator under simple random 
sampling with replacement (srswr) to the corresponding 
variance under a simple random cluster sampling design 
with the same sample size. The inverse of the ratio defined 
by Cornfield (1951) was also used by others. For example, 
Hansen, Hurwitz and Madow (1953, Vol. I, pages 

)270259 −  discussed the increase of the relative variance 
of a ratio estimator due to the clustering effect of cluster 
sampling over simple random sampling without 
replacement (srswor). The name, design effect, or Deff in 
short, however, was coined and defined formally by Kish 
(1965, section 8.2, page 258) as “the ratio of the actual 
variance of a sample to the variance of a simple random 
sample of the same number of elements” (for more history, 
see also Kish 1995, page 73 and references cited therein). 

Suppose that we are interested in estimating the 
population mean )(Y  of a variable y from a sample of 
size m drawn by a complex sampling design denoted by 
p from a population of size M. Kish’s Deff for an 
estimate )( py  is given by 

mSf

yV

y

pp

2)1(

)(
  Deff

−
=  (2.1) 

where pV  denotes variance with respect to Mmfp /, =  is 
the overall sampling fraction, and 12 )1( −−= MS y  

2
1 )( YyM

k k −∑ =   is  the  population  element  variance of the  
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y-variable. Although the design effect was originally 
intended and defined for an estimator of the population 
mean (Kish 1995), it can be defined for any meaningful 
statistic computed from a sample selected by a complex 
sampling design. 

The Deff is a population quantity that depends on the 
sampling design and refers to a particular statistic estimating 
a particular population parameter of interest. Different 
estimators can estimate the same parameter and their design 
effects are different even under the same design. Therefore, 
the design effect includes not only the efficiency of the 
design but also the efficiency of the estimator. Särndal, 
Swensson, and Wretman (1992, page 54) made this point 
clear by defining it as a function of the design ( p) and the 
estimator )θ̂(  for the population parameter )).(θθ( y=  
Thus, we may write it as 

)θ̂(

)θ̂(
)θ̂(Deff

srswor ′
=

V

V p
p  

where θ̂′  is the usual form of an estimator for θ under 
srswor, which is normally different from .θ̂  For example, to 
estimate the population mean, one may use the weighted 
(ratio) mean ∑∑= s kks k wyw / θ̂  with sampling weights 

kw  but θ̂′  would be the simple sample mean ,/mys k∑  
where the summation is over the sample s. We will see the 
effect of particular estimators θ̂  on the design effect in the 
later sections. 

Kish (1995) later advocated using a somewhat different 
definition, which is called Deft and uses the srswr variance 
in the denominator on the ground that without-replacement 
sampling is a part of the design and should be captured in 
the definition. He also reasoned that Deft is easier to use for 
making inferences and that it is better to define the design 
effect without the finite population correction factor )1( f−  
because the factor is difficult to compute in some situations. 
The new definition is given by 

)θ̂(
)θ̂(

)θ̂(Deft
srswr ′

=
V

Vp
p  

or ).θ̂(/)θ̂()θ̂(Deft srswr
2 ′= VV pp  Survey data software 

such as WesVar and SUDAAN produce Deft2 instead of 
Deff. We will use this definition in this paper. 

When the population parameter is the total ),(Y  the 
unbiased estimator is the weighted sample total, namely, 

∑= s kk ywY .ˆ  When the population mean is the parameter 
of interest, it is usually estimated by the weighted mean, that 
is, ∑ ∑= s s kkk wywY ./ˆ  It is a special case of the ratio 
estimator, ∑∑ s kks kk xwyw ,/  where 1≡kx  for all .sk∈  

One common misconception about the design effects for 
Ŷ  and Ŷ  is that they are similar in values. However, it has 
been observed that the design effect for ,Ŷ ),ˆ(Deft 2 Yp  
tends to be much larger than that for ,Ŷ  ).ˆ(Deft 2 Yp  This 

was also noted in, for example, Kish (1987) and Barron and 
Finch (1978). Some explanation can be found in Hansen 
et al. (1953, Vol. I, pages 336 – 340) who showed that the 
difference arises from the relative variance of the cluster 
sizes. More recently Särndal et al. (1992, pages 315 – 318) 
showed  that  contrary to the case of  ,Ŷ  the design effect 
for Ŷ  depends on the (relative) variation of the y-variable. 
In fact, even the design effect for Ŷ  may depend on the 
(relative) variation of the y-variable, which we will discuss 
in section 4. This dependence contradicts what the design 
effect is intended to measure as Kish (1995) explicitly 
described:   

“Deft are used to express the effects of sample design 
beyond the elemental variability ),/( 2 mS y  removing both 
the units of measurement and sample size as nuisance 
parameters. With the removal of ,yS  the units, and the 
sample size m, the design effects on the sampling errors 
are made generalizable (transferable) to other statistics 
and to other variables, within the same survey, and even 
to other surveys.”   
His statement may be loosely true for the weighted mean 

Ŷ  as expressed in the frequently used sample approximate 
formula for )ˆ,(Deft 2 Ypp  given by Kish (1987): 

}{ ( )22 cv1)1(ρ1)ˆ(Deft wp mY +−+=  (2.2) 

where the sample design p contains complex features such 
as unequal weighting and cluster sampling, )(ρρ p y=  is the 
intraclass correlation coefficient (often called within cluster 
homogeneity measure), m  is the average cluster sample 
size, and 2cv w  is the sample relative variance of the weights. 
Strictly speaking, this formula is not independent of the 
y-variable because ρ  is dependent on the y-variable. Also, 
the design effect may not be free of the unit of measurement 
unless )ˆ(YV p  is expressed in a factorial form of ./2 mS y  
See Park and Lee (2002). This formula (2.2) is valid only 
when there is no correlation between the sampling weights 
and the survey variable y. However, if the correlation is 
present, the formula may need to be modified as studied by 
Spencer (2000) and Park and Lee (2001). In the following 
section, we elaborate this aspect in detail for two-stage 
sampling and we will also examine this point further in 
section 4.1. 

 
3. Decomposition of the Design Effect Under 

Two-Stage Sampling  
We consider a sampling design conducted in two stages. 

Suppose that a population },,1:{ MkkU …==  with M 
elements is grouped into N clusters of size iM  such that 
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∑ == N
i iMM 1 .  The first stage sample },,1:{ niisa …==  

of n clusters (primary sampling units, or PSUs in 
abbreviation) is selected with replacement from N clusters 
with probabilities ,ip  where .11 =∑ =

N
i ip  Let )(Pr aa sp =  

denote the first stage sampling design. The second stage 
sample },,1:{ iib mjjs …==  of im  elements (secondary 
sampling units or SSUs in abbreviation) is then selected 
independently from each PSU i selected at the first stage 
according to some arbitrary sampling design, say =ibp  

)|(Pr aib ss where .asi ∈  Denote the total sample of ele-
ments and the overall sampling design by ibsi ss

a∈∪=  and 
),(Pr sp =  respectively. Associated with the thj  element in 

the ith cluster is a survey characteristic ,,,1, iij Mjy …=  
.,,1 Ni …=  For a given ,asi ∈  let ijw |  be the second stage 

sampling weights such that an estimator of the form =iŶ  
∑ =

im
j ijij yw1 | is unbiased for the cluster total ,1∑ == iM

j iji yY  
that is, ,)ˆ( iib YYE =  where bE  represents the expectation 
with respect to the second stage sampling. Let )/(1 ii npw =  
be the first stage sampling weights and let ∑ == N

i iYY 1  be 
the population total. It is easy to show that .)/( YpYE iia =  
Assuming that iY  are known for ,asi ∈  ∑ =

n
i ii Yw1  is the 

average of n unbiased estimators of Y so that 
,)( 1 YYwE i

n
i ia =∑ =  where aE  denotes the expectation with 

respect to the first stage sampling design. Note that both 
stages are sampling with replacement. Accordingly, it is 
possible that the same sampling unit (either cluster or 
element) is selected more than once but they are treated 
differently. Define the overall sampling weights by 

.| ijiij www =  Clearly, ∑ ∑= == n
i

m
j ijij

i ywY 1 1
ˆ  is unbiased for 

Y, that is, =)ˆ(YE p ∑ = == n
i iiaba YYwEYEE 1 ,)()ˆ(  

where pE  represents the expectation with respect to p. The 
variance of Ŷ  can be written as 

)ˆ()(

)ˆ()ˆ()ˆ(

1

2

1
ibi

N

i
i

N

i
ii

babap

YVwYpYw

YVEYEVYV

∑∑
==

+−=

+=
 

(3.1)
 

where ap VV ,  and bV  represent variances defined with 
respect to the overall, the first stage, and the second stage 
sampling. See Särndal et al. (1992, pages 151 – 152). 

A commonly used estimator for the population mean 
MYY /=  is the weighted (ratio) estimator given by 
MYY ˆ/ˆˆ =  where ∑ ∑= == n

i
m
j ij

i wM 1 1 .ˆ  Using Taylor linear-
ization, as shown in Särndal et al. (1992, pages 176 – 178), 
Ŷ  can be approximated as 

DMYY ˆˆ 1−+≅  (3.2) 

where ∑ ∑= == n
i

m
j ijij

i dwD 1 1
ˆ  is an unbiased estimator of the 

population total ∑ ∑= == N
i

M
j ij

i dD 1 1  of ,Yyd ijij −=  which 
represents the deviation of ijy  from the population mean 

.Y  Note that .0=D  Denoting ∑ = −== iM
j iiiji YMYdD 1  

and ∑ == im
j ijiji dwD 1 | ,ˆ  we obtain the approximate variance 

of Ŷ  from expression (3.2) as 

.)ˆ(
1

)ˆ(AV
1

2

1
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −= ∑∑

==
ibi

N

i

i
ii

N

i
p DVwY

M
M

Yw
M

Y  (3.3) 

If a simple random sample of size ∑ == n
i imm 1  is 

selected with replacement from the population U, then a 
sample mean myy s k /srs ∑=  and its expansion 

ks
y

f
yMY ∑== 1ˆ

srssrs  (3.4) 

would serve as the estimators of the population mean Y  
and total Y, respectively, under srswr, where Mmf /=  is 
the overall sampling fraction. Their variances under this 
sampling design are given as ),()ˆ( srssrswr

2
srssrswr yVMYV =  

where 21
srssrswr )( ySmyV −=  and 12 )1( −−= MSy  

.)( 2∑ −s k Yy  We note that m is the achieved sample size, 
which is a random quantity in general. From (3.1), (3.3), and 
above expressions with m replaced by its expected value m′  
with respect to the overall sampling design p, i.e., 

),(mEm p=′  the design effects for Ŷ  and Ŷ  can be written 
as 

⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −

⎩
⎨
⎧′

= ∑∑
== Y

Y
Vwp

Y

Y
w

m
Y i

bi

N

i
i

i
i

N

iy
p

ˆ

CV
)ˆ(Deft

1

2

1
2

2  (3.5) 

and 

⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −

⎩
⎨
⎧′

≅ ∑∑
== Y

D
Vw

M

M

Y

Y
w

m
Y i

bi

N

i

ii
i

N

iy
p

ˆ

CV
)ˆ(Deft

1

2

1
2

2  (3.6) 

where 222 /CV YS yy =  represents the population relative 
variance of the y -variable. From these expressions, the 
difference in design effects for Ŷ  and Ŷ  can be written as 
follows. 

,)ˆ(Deft)ˆ(Deft 22
bapp YY Δ+Δ≅−  (3.7) 

where 

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
⎪⎩

⎪
⎨
⎧

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
′

=Δ ∑
=

22

1
2CV M

M

Y

Y
p

Y

Y
w

m ii
i

i
i

N

iy
a  

and 

.
ˆˆ

CV 1
2

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎪⎩

⎪
⎨
⎧

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛′
=Δ ∑

= Y

D
V

Y

Y
Vw

m i
b

i
bi

N

iy

b  

The two components aΔ  and bΔ  in expression (3.7) 
reflect the differences arising from the respective sources of 
variation from the first and second stages of sampling. Of 
course, the second component disappears if all the elements 
in selected clusters are observed since it becomes a single-
stage design or if a simple random sample is selected in the 
second stage. This is because both variances )ˆ( ib YV  and 

)ˆ( ib DV  are equivalent under the aforementioned conditions, 
that is, 1) 0)ˆ()ˆ( == ibib DVYV  if 1| =ijw  for all i and j, and 
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2) 0)ˆ()ˆ( ≥= ibib DVYV  if iiij mMw /| =  for all i and j. In 
other words, 

, andallforif0 | jicw iijb ==Δ  (3.8) 

where ic  are nonnegative constants and not necessarily 
equal for different clusters. Meanwhile, we can show that 

⎪
⎩

⎪
⎨

⎧

∝−
∝
∝

=Δ
,if)(

,if)(

,if0

iip

iip

ii

a

YpyA

MYyA

Mp

 (3.9) 

for all i, where ∑ = −′= N
i iiiyp MMpwmyA 1

22 .)/()CV/()(  
Note that )(yAp  is a nonnegative quantity and also that the 
conditions in expression (3.9) can be restated, respectively, 
as ,,/ YYMMp iii ==  and ,/YYp ii =  where iii MYY /=  
for all .,,1 Ni …=  This result reveals the effect of cluster 
sampling on the precision of the two estimators. For 
example, if ,/MMp ii =  cluster sampling makes no 
difference in the precision of the two estimators. On the 
other hand, if YYYp ii

ˆ,/=  becomes more efficient than Ŷ  
in precision under cluster sampling, whereas the cluster 
sampling favors Ŷ  over Ŷ  in terms of precision if YYi =  
for all i. 

Now, let us consider some examples of the conditions of 
(3.8) and (3.9).  
Example 3.1 For one or two-stage cluster design with pps 
cluster sampling using MMp ii /=  and iij cw =|  for all 

,,,1 Ni …=  we have from (3.8) and (3.9) that =Δa  
,0=Δb that is, there is no difference in the design effects for 

Ŷ  and Ŷ . 
The same result as given in example 3.1 can be achieved 

by .ˆ YMY =  This estimator is the ratio estimator, which 
can be used if M is known. The case that overall sampling 
weights are a constant for all the elements (i.e., self-
weighting sampling design) is a well known special case. 
We will come back to this in section 4. 
 

Example 3.2 One-stage simple random cluster sampling or 
two-stage sample design with srs for both stages. Under 
these designs, we have iij cw =|  and Npi /1=  for all i  and 
j  and thus, it follows from (3.8) and (3.9) that 0=Δ b  and 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

′−

′

≡

=Δ

,equalallareif
CV

CV

,equalallareif
CV

CV

,allforif0

2

2

2

2
0

i
y

M

i
y

M

i

a

Ym

Ym

iMM

 (3.10) 

where ∑ =
− −=′=′ N

i iM NMMMnmm 1
222 /)(CV,/  denotes 

the relative variance of cluster sizes ,iM  and NMM /=  
denotes the average size of clusters. The conditions in (3.10) 
also satisfy the conditions in (3.9) and therefore, (3.10) is a 

special case of (3.9). Note that the quantity )(yAp  in 
expression (3.9) approximately reduces to 22 CV/CV yMm ⋅′  
when Npi /1=  for all i. 

Example 3.2 shows that when unequal cluster sizes are 
not reflected in the sampling design, the relative efficiency 
of Ŷ  over Ŷ  depends in part on the relative variability of 
cluster sizes. If the cluster means are all equal, then cluster 
sampling makes Ŷ  more efficient than ,Ŷ  vice versa if all 
the cluster totals are equal. On the other hand, if all clusters 
are equal in size, no difference in the design effects arises by 
simple random sampling of clusters. 

In section 4, we utilize the results derived in this section 
to discuss other examples used in the sampling literature. 

 
4. Examples on the Design Effect  

        in the Sampling Literature  
4.1 Unequal Probability Element Sampling  

Consider an unequal probability element sampling design 
without clustering. The discussion in section 3 applies to 
this example with 1≡iM  for all Ni ,,1 …=  and thus, 

.nm =  For brevity’s sake, we use lower cases iy  to denote 
the value of the y-variable, and we also assume that N is 
large so that .1)1/( ≅−NN  Due to the absence of the 
second stage sampling variation, the design effects for Ŷ  
and Ŷ  given in expressions (3.5) and (3.6) reduce to 

2

1

21

12

)(

)(

)ˆ(Deft
YyN

Ypyp

Y

i

N

i

iii

N

i
p

−

−
≅

∑

∑

=

−

=
 (4.1) 

and 

.
)(

)(

)ˆ(Deft
2

1

21

12

YyN

Yyp

Y

i

N

i

ii

N

i
p

−

−
≅
∑

∑

=

−

=
 (4.2) 

Further let us consider an example where the survey 
variable y is not correlated with the selection probability .ip  
  
Example 4.1 Unequal probability element sampling with no 
correlation between iy  and .ip  When iy  and ip  are not 
correlated, we can approximate 21

1 )( Yyp ii
N
i −−
=∑  by 

∑ = −N
i i YyWn 1

2 ,)(  where ∑ =
−= N

i iwNW 1
1 .  Note that 

∑∑ =
−

=
− == n

i ip
n
i ip nWNwnEnNwnE 1

21
1

1 /)(,/)(  and 
∑∑ =

−
=

− =n
i i

n
i pip NWnwnEwnE 1

1
1

221 ./)(/)(  Thus, 

( ) ( ) .

)ˆ(Deft

1
122

1
1

2

i
n

ipi
n

ip

p

wnEwnE

NWnY

∑∑ =
−

=
−=

≅
 

(4.3)
 

It is easy to show that 1/ ≥NWn  using the Cauchy-
Schwarz inequality (Apostol 1974, page 14). In addition, 
routine calculations show from (4.1) and (4.2) that  
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{ }
),1(CV

)()(2)(CV

)ˆ(Deft)ˆ(Deft

2

11
1212

22

−=

−−−−≅

−

−
==

−−− ∑∑
NWn

ppYypYppp

YY

y

i
N

i ii
N

i iiy

pp

 

where ∑ =
− == N

i i NpNp 1
1 ./1  The latter expression is 

obtained from ∑ =
− −=−N

i ii NWnppp1
21 1/)(  and ∑ =

N
i 1  

0))((1 ≅−−− ppYyp iii  because iy  and ip  are uncorre-
lated. Consequently,  

{ }1)ˆ(DeftCV)ˆ(Deft)ˆ(Deft 2222 −≅− − YYY pypp

 

or  

.CV)ˆ(Deft)CV1()ˆ(Deft 2222 −− −+≅ ypyp YY  (4.4) 

From (4.4), it is clear that )ˆ(Deft)ˆ(Deft 22 YY pp ≥ if 
1)ˆ(Deft2 ≥Yp  and the equality holds if 1)ˆ(Deft2 =Yp  or 

./nNW =  Also, )ˆ(Deft)ˆ(Deft 22 YY pp <  if <+ )CV1/(1 2
y  

.1)ˆ(Deft2 <Yp  
Example 4.1 shows that Ŷ  tends to have a larger design 

effect than Ŷ  if the correlation between iy  and ip  is weak 
and .1)ˆ(Deft2 ≥Yp   

The customary quantification of the effect of unequal 
weights on the design efficiency shown in (2.2) is due to 
Kish (1965, 11.7). He considered cases where the unequal 
weights arise from “haphazard” or “random” sources such 
as frame problems or non-response adjustments. Assuming 
that (1) a random sample of size n selected with replacement 
is divided into G weighting classes such that the same 
weight gw  is assigned to gn  sampling units within class g 
and ,1∑ == G

g gnn  and that (2) all G weighting class 
variances are equal to the unit variance of y, i.e., 22

yyg SS =  
for all ,,,1 Gg …=  he proposed a quantity given as 

,)ˆ(Deft
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⎜
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to measure the increment in the variance of Ŷ  in 
comparison with the hypothesized variance under srswr of 
size n. The rationale behind the above derivation is that the 
loss in precision of Ŷ  due to haphazard unequal weighting 
can be approximated by the ratio of the variance under 
disproportionate stratified sampling to that under the 
proportionate stratified sampling. 

In (4.5), letting 1=gn  for all g and thus, ,Gn =  Kish 
(1992) later proposed a well-known approximate formula 
given as 

,cv1)ˆ(Deft 2

2

1

2

1

2
Kish wi
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i
i

n

i

wwnY +=⎟
⎟
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⎞
⎜
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⎝

⎛
= ∑∑

==
 (4.6) 

where 2
1

212 /)(cv wwwn n
i iw ∑ =

− −=  is the sample relative 
variance and w  is the sample mean of .iw  Note that (4.6) 
is a sample approximate of (4.3). For a sampling design 

which is inefficient for estimation of Y, the inefficiency 
diminishes with the ratio estimation. Next, we consider the 
opposite case where the y-variable is correlated with the 
selection probability ,ip  where the efficiency of Ŷ  
increases.  
Example 4.2 Unequal probability element sampling where 

iy  is correlated with .ip  Suppose that iy  is linearly related 
with ip  by ,iii eBpAy ++=  where A and B are the least-
square regression coefficients of the model for the (finite) 
population and ie  is the corresponding residual. Further-
more, assume that the regression model fits well to the 
population data and the error variance is roughly homo-
geneous so that 0≅ewR  and ,02 ≅

we
R  where ewR  and 

we
R 2  denote the population correlations of pairs ),( ii we  and 

),,( 2
ii we  respectively. For example, ∑ == N

iewR 1  
},)1/{())(( weii SSNWwEe −−−  where ;/1 NeE N

i i∑ ==  

eS  and wS  are the population standard deviations of ie  and 
,iw  respectively. Then the design effects given by (4.1) and 

(4.2) reduce to 
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and 
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(4.8)

 

respectively, where ypR  is the population correlation 
between iy  and ip  and pCV  is the population coefficient 
of variation of ip  (see Park and Lee (2001) for proof ). It 
follows from (4.7) and (4.8) that )ˆ(Deft)ˆ(Deft 22 YY pp ≥  if 
and only if 

,CVCV2 ypypR ≤  (4.9) 

where the equality holds if and only if .CV/CV2 ypypR =  
Also, the inequality is reversed when the inequality in (4.9) 
becomes opposite. 

The condition (4.9) indicates that Ŷ  tends to be less 
efficient in terms of precision than Ŷ  whenever ypR  is 
small. Thus, we see that ypR  plays an important role in 
determining the design efficiency of unequal probability 
sampling on Ŷ  and Ŷ  and their relative efficiency. 

In an attempt to develop an approximate expression to 
the design effect when iy  is correlated with ,ip  Spencer 
(2000) proposed a sample approximate formula for Ŷ  and 
compared it with Kish’s approximate formula (4.6) for the 
special case of .0=ypR  As seen in example 4.2, the two 
design effects (4.7) and (4.8) are not equal unless 

nNW /=  (see Park and Lee (2001) for more discussion 
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and some numerical examples). In addition, this special case 
provides the same condition as for example 4.1 and thus, the 
two approximate design effect formulae (4.7) and (4.8) are 
equivalent to (4.4) and (4.3), respectively.  
4.2 One-Stage Cluster Sampling  

Consider a one-stage cluster sampling, where every 
element in a sampled cluster is included in the sample, i.e., 

ii Mm ≡  for all .asi∈  Due to the absence of the second 
stage sampling variation, the variance of Ŷ  takes only the 
first term of expression (3.1) and it can be decomposed as 

,
)1(

)( 2
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22

1
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yBii
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i
i YQwS

n

NM
YpYw ∑∑
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+−=−  (4.10) 

where 2
1

12 )()1( ∑ =
− −−= N

i iiyB YYMNS  and =iQ  
)( MpMM iii −  for .,,1 Ni …=  Note that 0=iQ  if 

,/ MMp ii =  that is, ip  is proportional to the cluster size 
.iM  Also, note that 2

yBS  is the between-cluster mean square 
deviation in an analysis of variance. Denoting the within-
cluster mean square deviation as ∑ =

−−= N
iyW NMS 1

12 )(  
∑ = −iM

j iij Yy1
2 ,)(  write )}1/()(δ1{22 −−+= NNMSS yyB  

with ./1δ 22
yyW SS−=  Since the expected sample size is 

,Mnm =′  the design effect for Ŷ  can be written from 
(4.10) as 
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Similarly, the design effect for Ŷ  can be expressed as 
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We observe that the design effect for Ŷ  differs from that for 
Ŷ  in the second term containing )(1 YyD ij

M
ii

i −= ∑ =  instead 
of .iY  In addition, we note that the quantity )(δδ yp=  is 
the adjusted coefficient of determination )( 2

adjR  in the 
regression analysis context. It may be called a homogeneity 
measure. For more discussion on ,δ  see Särndal et al. 
(1992, pages 130 – 131) and Lohr (1999, page 140).  
Example 4.3 One-stage simple random sampling of 
clusters. In this example, if Npi /1=  for all ,,,1 Ni …=  
the two design effects in (4.11) and (4.12) reduce, 
respectively, to 

2

1
2

2

)(
CV

1

δ
1

1
1

)ˆ(Deft

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
⋅

+

⎟
⎠
⎞

⎜
⎝
⎛

−
−+⎟

⎠
⎞

⎜
⎝
⎛ −=

∑
= Y

Y

M

M
MM

N

N

NM

N

N
Y

ii
N

i
i

y

p

 

(4.13)

 

and 
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(4.14)

 

where ./ NMM =  Since ∝− )ˆ(Deft)ˆ(Deft 22 YY pp  
),2)((1 YYMMM iii

N
i −−∑ = the inequality between design 

effects for Ŷ  and Ŷ  depends on the joint distribution of iY  
and .iM   
Example 4.4 One-stage simple random sampling of clusters 
of equal-size. In this case, we have 0MM i ≡  and 

Npi /1=  for all Ni ,,1 …=  and both design effects in 
(4.13) and (4.14) can be approximated by the same quantity 
given as 
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 (4.15a) 

since 0=− MM i  for all .,,1 Ni …=  
To introduce the clustering effect on variance estimation, 

one often uses the simplest form of one-stage simple 
random cluster sampling as in example 4.4. For example, 
see Cochran (1977, section 9.4), Lehtonen and Pahkinen 
(1995, page 91), and Lohr (1999, section 5.2.2). Although 
these authors adopted a without-replacement sampling 
scheme, we compare their formulae with our formulae with 
the with – replacement sampling assumption for the sake of 
both simplicity and consistency. Furthermore, the compar-
ison is valid because their formulae are defined with the 
finite population correction incorporated in both numerator 
and denominator so that its effect is basically cancelled out. 
Cochran (1977, section 9.4) derived  
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where ρ is called the intracluster correlation coefficient 
defined by 
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Rewriting 2
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and, thus, from (4.15c), )}1/({1ρ 00 −−= NMNM  
δ)/( 22 ≅yyW SS  assuming 0MM i ≡  for all ,,,1 Ni …=  

.1)1/( 00 ≅−NMNM  Therefore, further assuming /)1( −N  
1≅N  and ,1)1()1( 11

00 ≅−− −− NMNM  both design effect 
formulae (4.15a) and (4.15b) are approximately equivalent 
to .δ)1(1 0 −+ M  Other authors arrived at the same 
approximate formula. This is because δ and ρ essentially 
measure the same thing, which is the cluster homogeneity. 
Under this situation, two estimators Ŷ  and Ŷ  have the 
same design effect as discussed in example 3.2. Note that 
this is a simple case of a self-weighting sampling design. 

Särndal et al. (1992, section 8.7) compared the design 
effects for the two estimators under the setting of example 
4.3. They also derived a simplified expression δ)1(1 −+ M  
for (4.13) and (4.14), assuming the covariances of iM  with 

2
ii YM  and 2

ii DM  are ignorable. Their discussion on the 
difference between total and mean estimators boils down to 

aΔ  in example 3.2. They also noted that the design effect 
can be much more severe for the population total than for 
the population mean because more is lost through sampling 
of clusters when the total is estimated than when the mean is 
estimated. 

A common practice to handle unequal cluster sizes is to 
use a more efficient sampling method that incorporates the 
size difference such as pps sampling of clusters. Expressions 
(4.11) and (4.12) can be applied to arbitrary selection 
probabilities ,ip  where ip  are set to be proportional to 
some size measures .0≥iZ  The difference between the 
design effects for Ŷ  and Ŷ  is explained by aΔ  in (3.9), or 
alternatively 
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The term iQ  in (4.16) represents the effect of ip  on the 
variance estimation when size measures other than the 
actual cluster sizes iM  are used. Thomsen, Tesfu, and 
Binder (1986) considered the effect of an out-dated size 
measure among other factors under two-stage sampling with 
simple random sample of element at the second stage. We 
will come back to this in section 4.4. 

4.3 Self-Weighting Designs 
 

In a self-weighting sample, every sample element has the 
same weight. This leads to simple forms for both total and 
mean estimators. They are given by fyY /ˆ =  and 

,/ˆ myY =  where Mmf /=  is the overall sampling fraction 
and ij

m
j

n
i yy i∑∑ === 11  is the sample total. Then just like 

simple random sampling as shown in (3.4), the two 
estimators have the same design effect. 

A self-weighting sampling design can be implemented in 
various ways by synchronizing the first stage sampling 
method with the second stage sampling method (e.g., Kish 
1965, section 7.2). For example, if equal probability 
sampling is used for the first stage sampling, then the 
second stage should be sampled by an equal probability 
sampling method with a uniform sampling fraction for all 
PSUs. As a special case of this, where an srs of PSUs of 
equal size (i.e., 0MM i =  for all i ) is selected, Hansen 
et al. (1953, Vol. II, pages 162 – 163) showed 

[ ] ,)1(ρ1CV
1

)ˆ(CV 22 −+≅ m
m

Y yp  (4.17) 

where 22 /)ˆ()ˆ(CV YYVY pp =  is the relative variance of Ŷ  
under the sampling design p and ρ is the intracluster 
correlation coefficient as defined in (4.15c). Since the 
relative variance of Ŷ  under srswr is ,CV21

ym−  the well 
known approximate design effect formula for Ŷ  under a 
self-weighting design follows immediately as 

.)1(ρ1)ˆ(Deft 2 −+= mYp  (4.18) 

For one-stage cluster designs, we showed similar forms 
given in (4.15a) and (4.15b) (see also Yamane 1967, section 
8.7). Hansen et al. (1953, Vol. II. page 204) further showed 

)ˆ(CV)ˆ(CV 22 YY pp =  for a sample design that employs 
simple random sampling at both stages. This implies that Ŷ  
and Ŷ  have the same design effect.  
4.4 Two-Stage Unequal Probability Sampling 
 

Let us first consider the following example. 
 

Example 4.5 A two-stage sampling design where n PSUs 
are selected with replacement with probability ip  and an 
equal size simple random sample of 20 ≥m  elements is 
selected with replacement from each selected PSU. With 
routine calculations and simplification, we can show that 
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2
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222 /CV iiyiy YS=  denotes the within-cluster relative variance 
of the y-variable. Similarly, 

,τ)1(1)ˆ(Deft *
0

2
dp WmY +−+≅  (4.21) 

where )/()CV/()ˆ(/ 2
1

2
0srssrswr

* MpQmYVWW ii
N
iydd ∑ ===  

),/CV1()/( 0
22 mYD dii +  and iD  and 2CVdi  are defined 

with the transformed variable )( Yydd ijij −=  analogously 
to iY  and ,CV2

yi  respectively. (Detailed derivations of 
expressions (4.19) and (4.21) are available from the 
authors.) For the case with 0mmi =  for all i, the difference 
in the design effects given in (4.19) and (4.21) reduces to 
(3.7) or (4.16). There is no contribution from the second 
stage sampling to the difference. 

Coming back to Thomsen et al. (1986) who studied the 
effect of using an outdated measure of size on the variance, 
the above discussion on Ŷ  parallels with their discussion. 
The only difference is that they assumed a without-
replacement sampling scheme at the second stage. Note, 
however, that the definition of τ in Thomsen et al. (1986) is 
slightly different from (4.20) and from δ in section 4.2. 
However, there is a close connection between them. To see 
this, let us write the τ as a function of some quantities ib ’s 
associated with PSUs as follows: 
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Then the τ in Thomsen et al. (1986) is obtained with ,1=ib  
the τ in example 4.5 with ),1/(1 0 −− m  and δ in section 4.2 
with )}.1/()1(/{)1( 1 −−− ∑ = NMM i

N
ii  Equating Kish’s 

formula (4.18) for Ŷ  to (4.19) for ,Ŷ  they obviously over-
looked that the design effects for Ŷ  and Ŷ  can be very 
different. 

For more general cases, Kish (1987) proposed the 
following popular formula for Ŷ :  
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This was obtained by applying (4.5) (or (4.6)) and (4.18) 
recursively to incorporate the effects of both clustering and 
unequal weights. Gabler, Haeder and Lahiri (1999) justified 
the above formula for Ŷ  using a superpopulation model 
defined for the cross-classification of N clusters and G 
weighting classes. However, the difference between the 
design effects for Ŷ  and Ŷ  cannot be exposed by such a 
model-based approach, since ky  is treated as a random 
variable while kw  as fixed. Under this approach, )ˆ(Deft2 Yp  

differs from )ˆ(Deft2 Yp  only by a factor of ,)/ˆ( 2MM  
although the actual difference can be much more 
pronounced as we have showed in this paper (e.g., 
expressions (3.7) and (4.23)).  
4.5 More General Cases  

Weighting survey data involves not only sampling 
weights but also various weighting adjustments such as 
post-stratification, raking, and nonresponse compensation. 
We consider these general cases here. 

We can rewrite the first-order Taylor approximation to 
the weighted mean estimator MYY ˆ/ˆˆ =  given in (3.2) as 

./)ˆ(/)ˆ(/)ˆ( MMMYYYYYY −+−≅−  Taking variance 
on both sides, 
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where )ˆ(CV),ˆ(CV),ˆ(CV 222 MYY ppp  are the relative vari-
ances of ,ˆ,ˆ YY  and M̂  respectively, and )ˆ,ˆ( MYRp  is the 
correlation coefficient of Ŷ  and M̂  with respect to the 
complex sampling design p and any weighting adjustments. 
Since the relative variances of simple sample total and mean 

srsŶ  and srsy  are 21
srs

2
srswrsrs

2
srswr CV)(CV)ˆ(CV ymyY −==  

under srswr of size m, it follows from (4.22) that 

),()ˆ(Deft)()ˆ,ˆ(2

)ˆ(Deft)ˆ(Deft

2

22

yYyMYR

YY

pppp

pp

∇+∇+

≅
 
(4.23)

 

where )(CV/)ˆ(CV)( srssrswr yMy pp =∇  is nonnegative. 
As an illustration, consider a binary variable y, where 

YYy /)1(CV2 −≅  and, thus, )(yp∇  can be arbitrarily 
large as Y  approaches 1 or small as Y  approaches zero 
assuming .0)ˆ(CV ≠Mp  When )(yp∇  is near zero, the 
two design effects are nearly equal. Otherwise, one is larger 
than the other depending on the values of )(yp∇  and 

).ˆ,ˆ( MYRp  When the sampling weights are benchmarked 
to the known population size YM ˆ,  and Ŷ  have the same 
design effect since MM =ˆ  and .0)ˆ(CV =Mp  In this case, 
Ŷ  is not affected by the benchmarking but ,ˆˆ YMY =  
which is a ratio estimator. Note that poststratification or 
raking procedures may be used if population size infor-
mation is available at subpopulation level and we also get 
equivalent design effects. In general, however, we have 
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(4.24)

 

and vice versa. 
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It is illuminating to look at some specific situations. For 
example, if ,0)ˆ,ˆ( ≥MYRp  then ),ˆ(Deft)ˆ(Deft 22 YY pp >  
however, a negative correlation (i.e., 0)ˆ,ˆ( <MYRp ) 
doesn’t necessarily lead to ).ˆ(Deft)ˆ(Deft 22 YY pp ≤  For a 
special case of ,0)ˆ,ˆ( =MYRp  the difference is given by  

.
)(CV

)ˆ(CV
)ˆ(Deft)ˆ(Deft

srs
2
srswr

2
22

y

M
YY

p
pp ≅−  (4.25) 

Figure 1 shows graphically the relation between the two 
design effects. The expression in (4.23) is plotted for some 
fixed values of )ˆ,ˆ( MYRp  and ).(yp∇  The solid line 
passing through the origin which represents equal design 
effects is the reference line. As the graphs show, the 
comparison is not clear-cut. When ,0)ˆ,ˆ( <MYRp  

)ˆ(Deft)ˆ(Deft 22 YY pp ≥ for small )ˆ(Deft2 Yp  but the relation 
flips over as )ˆ(Deft2 Yp  grows larger. 

Hansen et al. (1953, Vol. I, pages 338 – 339) indicated 
that )ˆ,ˆ( MYRp  would often be close to 0. Under this 
situation, expression (4.25) is also written as ≅)ˆ(Deft 2 Yp  

)ˆ(Deft 2 Yp [ ],)ˆ(CV/)ˆ(CV1 22 YM pp+  from which we get 
≥)ˆ(Deft2 Yp ).ˆ(Deft2 Yp This special case was studied by 

Jang (2001). However, this doesn’t seem necessary as can 
be seen in the following example. 
 

Example 4.6 To illustrate the relationship between the 
design effects for Ŷ  and ,Ŷ  we used a data set for the 
adults collected from the U.S. Third National Health and 

Nutrition Examination Survey (NHANES III), which is 
given as a demo file in WesVar version 4.0. NHANES III is 
a nationwide large-scale medical examination survey based 
on a stratified multistage sampling design, for which the 
Fay’s modified balance repeated replication (BRR) method 
was employed for variance estimation. (See Judkins 1990 
for more details on Fay’s method.) We used only 19,793  
records with complete responses to those characteristics 
listed in Table 1. Note that the weight in the demo file is 
different from the NHANES III final weight that was 
obtained by poststratification. For more detailed information 
on the demo file, see Westat (2001). 

Table 1 presents the design effects for Ŷ  and ,Ŷ  and 
component terms of (4.23) for the selected characteristics. 
Note that )(yp∇  monotonically decreases in yCV  given 
that 793,19=m  and %.2.3)ˆ(cv =Mp  Although )(yp∇  
tends to be the determinant factor in the difference of the 
design effects, )ˆ,ˆ( MYRp  can be important when it is 
negative. For example, for two race/ethnicity characteristics, 
African American and Hispanic, the negative values, – 0.67 
and – 0.24 of )ˆ,ˆ( MYR p  were responsible for <)ˆ(Deft2 Yp  

).ˆ(Deft 2 Yp  Some design effects for Ŷ  are huge. This is not 
the case with the NHANES III poststratified final weights, 
with which Ŷ  and Ŷ  have the same design effect. This 
illustrates the importance of benchmarking weight 
adjustments for total estimates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            (a) 0.1)( =∇ yp             (b) 5.2)( =∇ yp  
  

Figure 1. Plots of )ˆ(Deft 2 Yp  versus )ˆ(Deft 2 Yp  for (a) 0.1)( =∇ yp (b) .5.2)( =∇ yp  The solid line corresponds to 

).ˆ(Deft)ˆ(Deft 22 YY pp =  Other lines correspond to =)ˆ,ˆ( MYRp – 0.9, – 0.5, – 0.2, 0, 0.2, 0.5, 0.9, 

respectively. 
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Table 1 
Comparison of the design effects for the weighted total and mean using a subset of the adult data file from the U.S.  

Third National Health and Nutrition Examination Survey (NHANES III) 
 

  Mean  Total      

Characteristic 
 Estimate Deft2 cv  Estimate Deft2 cv cvy )ˆ,

ˆ
( MYrp )(yp∇  

)
ˆ

(2cv

)ˆ(cv

Y

M

p

p−  

Has smoked 100+ 
cigarettes in life? 

Yes 0.53 4.13 0.014 98,397,795 31.31 0.038 0.944 0.20 4.83 – 0.58 

Has diabetes? Yes 0.05 1.75 0.040 9,783,307 1.92 0.042 4.246 – 0.34 1.07 – 0.31 
 No 0.95 1.75 0.002 176,341,218 393.47 0.033 0.236 0.34 19.35 – 5.53 
Has hypertension/ Yes 0.23 3.42 0.024 42,939,866 7.96 0.037 1.826 – 0.18 2.50 – 0.37 

high blood pressure? No 0.77 3.42 0.007 143,184,660 78.44 0.034 0.548 0.18 8.32 – 1.22 

Race/Ethnicity 
AFRICAN 

AMERICAN* 

0.12 7.64 0.054 21,567,028 4.21 0.040 2.762 – 0.67 1.65 – 0.11 

 HISPANIC* 0.05 6.70 0.079 9,550,326 6.48 0.078 4.300 – 0.24 1.06 – 0.08 

Gender MALE 0.48 1.40 0.009 88,725,967 19.18 0.033 1.048 – 0.11 4.35 – 1.55 

 FEMALE 0.52 1.40 0.008 97,398,559 25.39 0.034 0.954 0.11 4.77 – 1.70 
Number of cigarettes 
smoked per day – 5.25 6.42 0.037 977,225,826 10.51 0.047 2.044 – 0.09 2.23 – 0.17 

Population Size – –  –  –   186,124,526 –   0.032 –   –   –    –  
 

Note:  * denotes the cases where the design effect for Ŷ is smaller than that for .Ŷ   
5. Conclusion  

We studied the design effects of the two most widely 
used estimators for the population mean and total in sample 
surveys under various with-replacement sampling schemes. 
We do not think the employment of with-replacement 
sampling is necessarily a serious limitation because we can 
see things more clearly without muddling the math with 
probably unnecessary complications with without-replace-
ment sampling schemes. Furthermore, the effect of the finite 
population correction is largely canceled out in our 
formulation of the design effect and so the results are quite 
comparable with traditional design effects for without-
replacement sampling. Therefore, our findings should be 
useful in practice. We summarize our key findings below. 

Kish’s well-known approximate formulae for the design 
effect for (ratio type) weighted mean estimators are not 
easily generalized in their form and concepts to more 
general problems, especially weighted total estimators 
contrary to what many people would perceive. In fact, Ŷ  
and Ŷ  often have very different design effects unless the 
sampling design is self-weighting or the sampling weights 
are benchmarked to the known population size. In addition, 
the design effect is in general not free from the distribution 
of the study variable even for the mean estimator, let alone 
the total estimator. Furthermore, the correlation of the study 
variable with the weights used in estimation can be an 
important factor in determining the design effect. Therefore, 
apart from its original intention, the design effect measures 
not only the effect of a complex sampling design on a 
particular statistic but also the effects of the distribution of 

the study variable and its relations to the sampling design on 
the statistic. As complex survey software packages routinely 
produce the design effect, it seems appropriate to warn the 
user of the packages of these rather obscure facts about the 
design effect.  
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