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Design Effects for the Weighted Mean and Total Estimators
Under Complex Survey Sampling

Inho Park and Hyunshik Lee'

Abstract

We revisit the relationship between the design effects for the weighted total estimator and the weighted mean estimator
under complex survey sampling. Examples are provided under various cases. Furthermore, some of the misconceptions

surrounding design effects will be clarified with examples.

Key Words: Simple random sample; pps sampling; Multistage sampling; Self-weighting; Poststratification; Intracluster

correlation coefficient.

1. Introduction

The design effect is widely used in survey sampling for
developing a sampling design and for reporting the effect of
the sampling design in estimation and analysis. It is defined
as the ratio of the variance of an estimator under a complex
sampling design to that of the estimator under simple
random sampling with the same sample size. An estimated
design effect is routinely produced by computer software
packages for complex surveys such as WesVar and
SUDAAN. It was originally intended and defined for the
weighted (ratio) estimator of the population mean (Kish
1995). However, a common practice has been to apply this
concept for other statistics such as the weighted total
estimator often with success but at times with confusion and
misunderstanding. The latter situation occurs particularly
when simple but useful results derived under a relatively
simple sampling design are applied to more complex
problems. In this paper, we examine the relationship
between the design effects for the weighted total estimator
and the weighted mean estimator under various complex
survey sampling designs. In section 2, we briefly review the
definition of the design effect and its practical usage while
discussing some of the misconceptions surrounding design
effects for the weighted total and mean estimators.
Subsequently, in section 3, we analyze the difference
between the design effect for the weighted total estimator
and that for the weighted mean estimator under a two-stage
sampling design followed by a discussion regarding the
design effects under various two-stage sampling designs and
some more general cases in section 4. We try to clarify
some of the misconceptions with these examples. Finally,
we summarize our discussion in section 5.

2. A Brief Review on Definition and Use of Design
Effect in Practice

A precursor of the design effect that has been
popularized by Kish (1965) was used by Cornfield (1951).
He defined the efficiency of a complex sampling design for
estimating a population proportion as the ratio of the
variance of the proportion estimator under simple random
sampling with replacement (srswr) to the corresponding
variance under a simple random cluster sampling design
with the same sample size. The inverse of the ratio defined
by Cornfield (1951) was also used by others. For example,
Hansen, Hurwitz and Madow (1953, Vol. I, pages
259 —270) discussed the increase of the relative variance
of a ratio estimator due to the clustering effect of cluster
sampling simple random sampling without
replacement (srswor). The name, design effect, or Deff in
short, however, was coined and defined formally by Kish
(1965, section 8.2, page 258) as “the ratio of the actual
variance of a sample to the variance of a simple random
sample of the same number of elements” (for more history,
see also Kish 1995, page 73 and references cited therein).

Suppose that we are interested in estimating the
population mean (Y) of a variable y from a sample of
size m drawn by a complex sampling design denoted by
p from a population of size M. Kish’s Deff for an
estimate (y,) is given by

S
Deff——(1 5 Si/m

over

Q.1

where V, denotes variance with respect to p, f=m/M is
the overall sampling fraction, and S f =M-1"
>¥ (v, —Y)? is the population element variance of the
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y-variable. Although the design effect was originally
intended and defined for an estimator of the population
mean (Kish 1995), it can be defined for any meaningful
statistic computed from a sample selected by a complex
sampling design.

The Deff is a population quantity that depends on the
sampling design and refers to a particular statistic estimating
a particular population parameter of interest. Different
estimators can estimate the same parameter and their design
effects are different even under the same design. Therefore,
the design effect includes not only the efficiency of the
design but also the efficiency of the estimator. Sdrndal,
Swensson, and Wretman (1992, page 54) made this point
clear by defining it as a function of the design ( p) and the
estimator (é) for the population parameter (0 =0 (y)).
Thus, we may write it as

v, )
VSl'SWOr (e ,)

where §” is the usual form of an estimator for 6 under
srswor, which is normally different from 0. For example, to
estimate the population mean, one may use the weighted
(ratio) mean 6= YWy, /2w, with sampling weights
w, but 0’ would be the simple sample mean Y.y, /m,
where the summation is over the sample s. We will see the
effect of particular estimators 0 on the design effect in the
later sections.

Kish (1995) later advocated using a somewhat different
definition, which is called Deft and uses the srswr variance
in the denominator on the ground that without-replacement
sampling is a part of the design and should be captured in
the definition. He also reasoned that Deft is easier to use for
making inferences and that it is better to define the design
effect without the finite population correction factor (1— f)
because the factor is difficult to compute in some situations.
The new definition is given by

Deff , (6) =

V,©)
VvSrSWr (e ,)

or Defti (é) =V, (é)/ Vour (é'). Survey data software
such as WesVar and SUDAAN produce Deft” instead of
Deff. We will use this definition in this paper.

When the population parameter is the total (Y), the
unbiased estimator is the weighted sample total, namely,
Y=y, w,y,. When the population mean is the parameter
of interest, it is usually estimated by the weighted mean, that
is, Y=, w,y,/X,w,. It is a special case of the ratio
estimator, > w,y, />, w, x,, where x, =1 forall kes.

One common misconception about the design effects for
Y and Y is that they are similar in values. However, it has
been observed that the design effect for Y, Deft? (Y),
tends to be much larger than that for ¥, Deft (¥). This

Deft , () =

5

was also noted in, for example, Kish (1987) and Barron and
Finch (1978). Some explanation can be found in Hansen
etal. (1953, Vol. 1, pages 336 —340) who showed that the
difference arises from the relative variance of the cluster
sizes. More recently Sdrndal ef al. (1992, pages 315 —318)
showed that contrary to the case of Y, the design effect
for ¥ depends on the (relative) variation of the y-variable.
In fact, even the design effect for ¥ may depend on the
(relative) variation of the y-variable, which we will discuss
in section 4. This dependence contradicts what the design
effect is intended to measure as Kish (1995) explicitly
described:

“Deft are used to express the effects of sample design
beyond the elemental variability (S>/m), removing both
the units of measurement and sample size as nuisance
parameters. With the removal of S, the units, and the
sample size m, the design effects on the sampling errors
are made generalizable (transferable) to other statistics
and to other variables, within the same survey, and even
to other surveys.”

A

His statement may be loosely true for the weighted mean
Y as expressed in the frequently used sample approximate
formula for Defti (p,Y) given by Kish (1987):
Deft? (V) = {1+p(m—1) Hi+cv? ) 22)
where the sample design p contains complex features such
as unequal weighting and cluster sampling, p=p, (») is the
intraclass correlation coefficient (often called within cluster
homogeneity measure), m is the average cluster sample
size, and cv?, is the sample relative variance of the weights.
Strictly speaking, this formula is not independent of the
y-variable because p is dependent on the y-variable. Also,
the design effect may not be free of the unit of measurement
unless V, (Y) is expressed in a factorial form of § y2 /m.
See Park and Lee (2002). This formula (2.2) is valid only
when there is no correlation between the sampling weights
and the survey variable y. However, if the correlation is
present, the formula may need to be modified as studied by
Spencer (2000) and Park and Lee (2001). In the following
section, we elaborate this aspect in detail for two-stage
sampling and we will also examine this point further in
section 4.1.

3. Decomposition of the Design Effect Under
Two-Stage Sampling

We consider a sampling design conducted in two stages.
Suppose that a population U ={k:k=1,..., M} with M
elements is grouped into N clusters of size M, such that

Statistics Canada, Catalogue No. 12-001
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M =YY M,. The first stage sample s, ={i:i=1,...,n}
of n clusters (primary sampling units, or PSUs in
abbreviation) is selected with replacement from N clusters
with probabilities p;, where ¥V, p, =1. Let p, =Pr(s,)
denote the first stage sampling design. The second stage
sample s,, ={j:j=1,...,m;} of m, elements (secondary
sampling units or SSUs in abbreviation) is then selected
independently from each PSU i selected at the first stage
according to some arbitrary sampling design, say p,; =
Pr(s,;|s,)where i€ s,. Denote the total sample of ele-
ments and the overall sampling design by s=u,_, s,, and
p = Pr(s), respectively. Associated with the ;™ element in
the i™ cluster is a survey characteristic VisJ=L..., M,
i=1,...,N. Foragiven i€ s,, let w; be the second stage
samphng weights such that an estrmator of the form Yi =
pay LW Vg rs unbiased for the cluster total ¥, =Y 7 Vi
that is, £, (Y;)=Y,, where E, represents the expectation
with respect to the second stage sampling. Let w, =1/(np,)
be the first stage sampling weights and let ¥ =YY ,Y, be
the population total. It is easy to show that £, (Y;/p,)=Y.
Assuming that Y, are known for ies,, >/ w,Y, is the
average of n unbiased estimators of Y so that
E, (X-,w, Y,)=Y, where E_ denotes the expectation with
respect to the first stage sampling design. Note that both
stages are sampling with replacement. Accordingly, it is
possible that the same sampling unit (either cluster or
element) is selected more than once but they are treated
differently. Define the overall sampling weights by
w; =w, wy,. Clearly, Y=y, 2wy yy is unbiased for
Y, that is, E,(Y)=E,E,(Y)=E,(SwY,)=Y,

where E, represents the expectation Wlth respect to p. The
variance of Y can be written as

V,(Y)=V,E,(Y)+E,V,(Y)

ies,

N N
=2 w (¥ P V) + X wh, () (3

i=1 i=1
where V.V, and V, represent variances defined with
respect to the overall, the first stage, and the second stage
sampling. See Sarndal ef al. (1992, pages 151 — 152).

A commonly used estimator for the population mean
Y Y/M is the Welghted (ratlo) estimator given by
Y=Y/M where M = 2127w, Using Taylor linear-
ization, as shown in Sirndal et al (1992, pages 176 —178),
Y can be approximated as

Y=Y+M"'D (32)
where D = Y 27wy dy; s an unbiased estimator of the
population total D=3 ,>. d, of d;=y,-Y, which

represents the deviation of y, from the population mean
Y. Note that D= 0 Denoting D, =Yd, =Y, —M,Y
and D pI d;, we obtain the approxrmate variance
of ¥ from expressmn (3.2)as

Statistics Canada, Catalogue No. 12-001

AV, (?):#{Z Wi( —

i=1

M, Y & .
ﬁYJ +Z1 w, Vb(Di)}. (3.3)

If a simple random sample of size m=3/_,m, is
selected with replacement from the population U, then a
sample mean y . =Y v, /m and its expansion

ysrs_ z Vi

would serve as the estimators of the population mean Y
and total Y, respectively, under srswr, where f =m/M is
the overall sampling fraction. Their variances under this

34

Sampllng deSign are glven as Sl'SWl' ( SIS ) M srswr (ysrs )
Where VS]’SW]’ (.)_}Sl's) = m71 Si and sz’ - (M 1)7
>, (¥, —Y)*. We note that m is the achieved sample size,

which is a random quantity in general. From (3.1), (3.3), and
above expressions with m replaced by its expected value m’
wrth respect to the overall sampling design p, ie.,
m=E ,(m), the design effects for Y and ¥ can be written
as

r (N 2 N >
Deft? (V)= C”\*] . {Z W, g— pl) +y inb(%J} 3.5)

y Li=l i=l

and

= m [& (v M) & b,

Deft (V) =— w| L2 23wl =2 L (3.6
AP CVVS{E ’[Y Mj 2 ’b(YJ}( :

where CVf. =Si /Y? represents the population relative

variance of the y -variable. From these expressions, the

difference in design effects for ¥ and ¥ can be written as
follows.

Deft? (V) - Deft® (V)= A, +A,, (3.7)

where

and

The two components A, and A, in expression (3.7)
reflect the differences arising from the respective sources of
variation from the first and second stages of sampling. Of
course, the second component disappears if all the elements
in selected clusters are observed since it becomes a single-
stage design or if a simple random sample is selected in the
second stage. This is because both variances V,(Y;) and
v, (D ) are equivalent under the aforementioned conditions,
that is, 1) V(Y) V(D) 0 if w;, =1 foralliand j, and
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2) V,(0) =V, (D) 20 if w,
other words,

=M,/m,; for all i and j. In

A, =0 if wj =c, foralliand j, 3.8

where ¢; are nonnegative constants and not necessarily
equal for different clusters. Meanwhile, we can show that

0 if piocMi’
A,=1 A4,(y) if YeM,
—4,(y) if  p; Y,

for all i, where A4,(y)= (m’ /CV W ow (p,— M,/ M),
Note that 4,(y) is a nonnegative quantlty and also that the
conditions in expression (3.9) can be restated, respectively,
as p,=M,/M,Y, =Y, and p,=Y,/Y, where Y, =Y,/M,
for all i=1, ..., N. This result reveals the effect of cluster
sampling on the precision of the two estimators. For
example, if p,=M,/M, cluster sampling makes no
difference in the precision of the two estimators. On the
other hand, if p, =Y,/7Y, Y becomes more efficient than ¥
in precision under cluster sampling, whereas the cluster
sampling favors ¥ over Y in terms of precision if Y=Y
for all i.

Now, let us consider some examples of the conditions of
(3.8) and (3.9).

Example 3.1 For one or two-stage cluster design with pps
cluster sampling using p, =M, /M and w;, =c; for all
i=1 , N, we have from (3.8) and (3.9) that A, =

= O that is, there is no difference in the design effects for
Y and Y.

The same result as given in example 3.1 can be achieved
by Y=MY. This estimator is the ratio estimator, which
can be used if M is known. The case that overall sampling
weights are a constant for all the elements (i.e., self-
weighting sampling design) is a well known special case.
We will come back to this in section 4.

(3.9)

Example 3.2 One-stage simple random cluster sampling or
two-stage sample design with srs for both stages. Under
these designs, we have w;; =¢; and p, =1/N forall i and
j and thus, it follows from 3. 8) and (3.9) that A, =0 and

0 if M, =M, foralli,
,CV,,
i M
CV;

_,CV;,
2

if Y, areall equal, (3.10)

if Y, areallequal,

y

where 7’=m'/n,CV,, =M YN, (M,~ M)*/N  denotes
the relative variance of cluster sizes M,, and M =M /N
denotes the average size of clusters. The conditions in (3.10)
also satisfy the conditions in (3.9) and therefore, (3.10) is a

7

special case of (3.9). Note that the quantity 4,(y) in
expression (3.9) approximately reduces to 72" CV2 / CV2
when p, =1/N foralli.

Example 3.2 shows that when unequal cluster sizes are
not reflected in the sampling design, the relative efficiency
of Y over ¥ depends in part on the relative variability of
cluster sizes. If the cluster means are all equal, then cluster
sampling makes Y more efficient than Y, vice versa if all
the cluster totals are equal. On the other hand, if all clusters
are equal in size, no difference in the design effects arises by
simple random sampling of clusters.

In section 4, we utilize the results derived in this section
to discuss other examples used in the sampling literature.

4. Examples on the Design Effect
in the Sampling Literature

4.1 Unequal Probability Element Sampling

Consider an unequal probability element sampling design
without clustering. The discussion in section 3 applies to
this example with M, =1 for all i=1,...,N and thus,
m=n. For brevity’s sake, we use lower cases y; to denote
the value of the y-variable, and we also assume that N is
large so that N/(N—1)=1. Due to the absence of the
second stage sampling variation, the design effects for Y
and Y given in expressions (3.5) and (3.6) reduce to

& 2
Zpi_ (vi—pY)

Deft? (V)= - @1
Z N(y, -
and
N
X
Deft? (V)= —' — 42)
ZN(y,

Further let us consider an example where the survey
variable y is not correlated with the selection probability p,.

Example 4.1 Unequal probability element sampling with no
correlation between y, and p,. When y;, and p, are not
correlated, we can approximate ZlN:l pil(y,=Y)* by
niw 3N 1(y -Y)*, where W =N"' ZNIW Note that
E,(n' 3L lw) N/n, E (n' Y w?)=NW/n and
E (;r1 Siw )/ Ej(n”! z" w;)=nW/N. Thus,

Deft? ¥)z=niW /N
w2) [E2 (i S ). @3)

It is easy to show that n// /N >1 using the Cauchy-
Schwarz inequality (Apostol 1974, page 14). In addition,
routine calculations show from (4.1) and (4.2) that

-,

Statistics Canada, Catalogue No. 12-001



Deft? (¥)- Deft (¥)
ECV;Q{ Yoo -p =2 Y (= V)(pi- p)}
=CV,>(nW[N-1),

where p=N"'3Y p =1/N. The latter expression is
obtained from YV, p ' (p,~p)>=nW /N-1 and XV,
27 (»,=Y)(p,—P) =0 because y, and p, are uncorre-
lated. Consequently,

Deft? (7) - Deft? (F) = V2 {Deft? (7)1}
or

Deft? () =(1+CV;?) Deft® (Y)-CV2.  (44)

From (4.4), it is clear that Deft (Y )2 Deft2 (Y ) if
Deft (Y)>1 and the equahty holds if Deft (Y ) =1 or
W= N/n Also, Deft’ (Y)< Deft’ (Y) if 1/(1+CV )<
Deft’ (Y )<l1.

Example 4.1 shows that ¥ tends to have a larger design
effect than Y if the correlation between y, and p, is weak
and Deft’ (Y)21.

The customary quantification of the effect of unequal
weights on the design efficiency shown in (2.2) is due to
Kish (1965, 11.7). He considered cases where the unequal
weights arise from “haphazard” or “random” sources such
as frame problems or non-response adjustments. Assuming
that (1) a random sample of size n selected with replacement
is divided into G weighting classes such that the same
weight w, is assigned to n, sampling units within class g
and n=YJ_n ¢» and that (2) all G weighting class
variances are equal to the unit variance of y, i.e., S f,g =S f
forall g =1, ...,G, he proposed a quantity given as

2
- G G
Defty,, (Y)=n z n, wé/ [z n, ng , “4.5)
g=1 g=1

to measure the increment in the variance of Y in
comparison with the hypothesized variance under srswr of
size n. The rationale behind the above derivation is that the
loss in precision of Y due to haphazard unequal weighting
can be approximated by the ratio of the variance under
disproportionate stratified sampling to that under the
proportionate stratified sampling.

In (4.5), letting n, =1 for all g and thus, n=G, Kish
(1992) later proposed a well-known approximate formula
given as

2
Defty, V)=n W’ / (Z w,} =1+cv, (4.6)
i=1 i=1

where cvi, =n"' i (w, —w)?/w? is the sample relative
variance and W 1is the sample mean of w,. Note that (4.6)

is a sample approximate of (4.3). For a sampling design
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which is inefficient for estimation of Y, the inefficiency
diminishes with the ratio estimation. Next, we consider the
opposite case where the y-variable is correlated with the
selection probability p;, where the efficiency of Y
increases.

Example 4.2 Unequal probability element sampling where
v, is correlated with p,. Suppose that y, is linearly related
with p, by y, = A+Bp, +e¢;, where 4 and B are the least-
square regression coefficients of the model for the (finite)
population and e, is the corresponding residual. Further-
more, assume that the regression model fits well to the
population data and the error variance is roughly homo-
geneous so that R, =0 and R, =0, where R, and
R,  denote the populatlon correlations of pairs (e, w; ) and
(el ,w) respectively.  For example, R, =Y,

(e,—E)w,—W)/{(N-1)S,S,}, where E=YV e /N;
S, and S, are the population standard deviations of e, and
w;, respectively. Then the design effects given by (4.1) and
(4.2) reduce to

Deft? (¥) = (ni /N) (1- R%)

_ R ’
+(nW /N - 1)[ o~ %} 4.7

and
Deft? (V)= (n7/N) (1-R},)

J , 4.8)

respectively, where R, is the population correlation
between y;, and p, and CV  is the population coefficient
of variation of p; (see Park and Lee (2001) for proof). It
follows from (4.7) and (4.8) that Deft’ (Y) > Deft’ (Y) if
and only if

_ R
+(nW/N—1)[C\y/p

p

2R, < CV,/CV,, 4.9)

where the equality holds if and only if 2R , =CV,/CV,.
Also, the inequality is reversed when the 1nequa11ty in (4. 9)
becomes opposite.

The condition (4.9) indicates that j tends to be less
efficient in terms of precision than ¥ whenever R, is
small. Thus, we see that R, plays an important role in
determining the design efficiency of unequal probability
sampling on Y and Y and their relative efficiency.

In an attempt to develop an approximate expression to
the design effect when y, is correlated with p,, Spencer
(2000) proposed a sample approximate formula for Y and
compared it with Kish’s approximate formula (4.6) for the
special case of R, =0. As seen in example 4.2, the two
design effects (4 7) and (4.8) are not equal unless
W =N/n (see Park and Lee (2001) for more discussion
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and some numerical examples). In addition, this special case
provides the same condition as for example 4.1 and thus, the
two approximate design effect formulae (4.7) and (4.8) are
equivalent to (4.4) and (4.3), respectively.

4.2 One-Stage Cluster Sampling

Consider a one-stage cluster sampling, where every
element in a sampled cluster is included in the sample, i.e.,
m; =M, for all ies,. Due to the absence of the second
stage sampling variation, the variance of ¥ takes only the
first term of expression (3.1) and it can be decomposed as

M=)

N
Z w, (Y; — p;
i=1
where =(N-)"'IV,M,Y,-Y)> and Q=
M.(M,-pM) for i=1,...,N. Note that Q, =0 if
=M,/ M, thatis, p, is proportional to the cluster size
M. Also, note that SiB is the between-cluster mean square
deviation in an analysis of variance. Denoting the within-
cluster mean square deviation as SiW =(M-N)"'3V,
YMy (v, —T)’, write 82, =S2{1+8(M — N)/(N-1)}
with 6=1- SfW/S2 Since the expected sample size is
m’'=nM, the design effect for Y can be written from
(4.10) as

Deft? (Y) = N M=N
7 N N-1
n

N
Sy + Y. w0, Y, (410)

i=1

@11

Similarly, the design eftect for Y canbe expressed as

Deft;(?)z(N]\:l)(H

nM z w.Q: ( D; ’
cviis M \Y )

1

N-1

@.12)

We observe that the design effect for ¥ differs from that for
Y in the second term containing D, = Y, ( Vi ~Y) instead
of Y. In addition, we note that the quantity 3=3,(y) is
the adjusted coefficient of determination (Rddj) in the
regression analysis context. It may be called a homogeneity
measure. For more discussion on &, see Sdrndal et al.
(1992, pages 130—131) and Lohr (1999, page 140).

Example 4.3 One-stage simple random sampling of
clusters. In this example, if p,=1/N forall i=1,...,N,
the two design effects in (4.11) and (4.12) reduce,
respectively, to

N-CV: 5

and

DeftZ(?)g[N_l)[HM_st

r N N-1
1 X M. YD Y

— Y WM. -M)| = | =, 414
NCVfZ::( ’ )[MJ(YJ

where M =M/N. Since Deft?(¥)-Deft® (V)

LM (M, —M)(2Y,-Y),the 1nequa11ty between des1gn
effects for ¥ and ¥ depends on the joint distribution of Y,
and M,.

Example 4.4 One-stage simple random sampling of clusters

of equal-size. In this case, we have M,=M, and

p;=1/N for all i=1,...,N and both design effects in

(4.13) and (4.14) can be approximated by the same quantity
NM

given as
(N_lj 1+ 0_1)8,
N N -1

since M,—M =0 forall i=1, ..., N.

To introduce the clustering effect on variance estimation,
one often uses the simplest form of one-stage simple
random cluster sampling as in example 4.4. For example,
see Cochran (1977, section 9.4), Lehtonen and Pahkinen
(1995, page 91), and Lohr (1999, section 5.2.2). Although
these authors adopted a without-replacement sampling
scheme, we compare their formulae with our formulae with
the with — replacement sampling assumption for the sake of
both simplicity and consistency. Furthermore, the compar-
ison is valid because their formulae are defined with the
finite population correction incorporated in both numerator
and denominator so that its effect is basically cancelled out.
Cochran (1977, section 9.4) derived

NM, -1 ~
WD 1+, - Dp]
=1+(M, -1p, (4.15b)

(4.152)

Deft? (Y) =

where p is called the intracluster correlation coefficient
defined by

22 ZO: (yij_Y)(yi/'_)_/)
o= i=1 j>k:1N - ' (4.15¢)
(Mo_l)z (yg/_)?)z

=l j=1
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Rewritng XX, [Z10, (v, — V)P =M (N-1)S,;  and
S B (= Y)’=(NM o —1) S = (N =S}, + N(M,—1)
Syzw, it is easy to show that

22 ZD: vy

i=l  j>k=1

=2 {i(yij—Y)

i=l | j=1

Ny - 1)

2 M, B

} 3 S, -vy
i1 el

= (M, - D{(NM, —1)S? = NM S w)]

and, thus, from (4.15c), p=1-{NM,/(NM,-1)}
(S3y/8})=8 assuming M,=M, for all i=l,...,N,
NM o /(NM,—1)=1. Therefore, further assuming (N —1)/
N=l and (NM,-1)M;" (N-1)"=1, both design effect
formulae (4.15a) and (4.15b) are approximately equivalent
to 1+(M,—1)3. Other authors arrived at the same
approximate formula. This is because & and p essentially
measure the same thing, which is the cluster homogeneity.
Under this situation, two estimators ¥ and Y have the
same design effect as discussed in example 3.2. Note that
this is a simple case of a self-weighting sampling design.

Sérndal ef al. (1992, section 8.7) compared the design
effects for the two estimators under the setting of example
4.3. They also derived a simplified expression 1+ (M —1)3
for (4.13) and (4. 14) assuming the covariances of M, with
M.Y? and M,D; are ignorable. Their discussion on the
difference between total and mean estimators boils down to
A, in example 3.2. They also noted that the design effect
can be much more severe for the population total than for
the population mean because more is lost through sampling
of clusters when the total is estimated than when the mean is
estimated.

A common practice to handle unequal cluster sizes is to
use a more efficient sampling method that incorporates the
size difference such as pps sampling of clusters. Expressions
(4.11) and (4.12) can be applied to arbitrary selection
probabilities p,, where p, are set to be proportional to
some size measures Z; 20. The difference between the
design effects for Y and ¥ is explained by A, in (3.9), or
alternatively

A= v;;Qz" ﬂ% ‘(%j } (416

The term Q; in (4.16) represents the effect of p, on the
variance estimation when size measures other than the
actual cluster sizes M, are used. Thomsen, Tesfu, and
Binder (1986) considered the effect of an out-dated size
measure among other factors under two-stage sampling with
simple random sample of element at the second stage. We
will come back to this in section 4.4.

Statistics Canada, Catalogue No. 12-001

4.3 Self-Weighting Designs

In a self-weighting sample, every sample element has the
same weight. This leads to simple forms for both total and
mean estimators. They are given by Y=y/f and
Y = y/m, where f =m/M is the overall sampling fraction
and y=%7, X7, v, is the sample total. Then just like
simple random sampling as shown in (3.4), the two
estimators have the same design effect.

A self-weighting sampling design can be implemented in
various ways by synchronizing the first stage sampling
method with the second stage sampling method (e.g., Kish
1965, section 7.2). For example, if equal probability
sampling is used for the first stage sampling, then the
second stage should be sampled by an equal probability
sampling method with a uniform sampling fraction for all
PSUs. As a special case of this, where an srs of PSUs of
equal size (i.e., M,=M, for all i) is selected, Hansen
et al. (1953, Vol. 11, pages 162 — 163) showed

cv, ()= —cvy2 [1+p@m -1, (4.17)
where CV (7 )=V, (}7 )/Y? is the relative variance of ¥
under the sampling design p and p is the intracluster
correlation coefficient as defined in (4.15c). Since the
relative variance of ¥ under srswr is m™' CVf. , the well
known approximate design effect formula for ¥ under a
self-weighting design follows immediately as

Deft (Y) =1+ p( —1). 4.18)

For one-stage cluster designs, we showed similar forms
given in (4.15a) and (4.15b) (see also Yamane 1967, section
8.7). Hansen et al, (1953, Vol. 1. page 204) further showed
CV (Y )= CV (Y ) for a sample design that employs
51mp1§ random samphng at both stages. This implies that Y
and Y have the same design effect.

4.4 Two-Stage Unequal Probability Sampling
Let us first consider the following example.

Example 4.5 A two-stage sampling design where n PSUs
are selected with replacement with probability p, and an
equal size simple random sample of m,=2 elements is
selected with replacement from each selected PSU. With
routine calculations and simplification, we can show that

Deft? (Y) =1+ (m, — D)1+ W, , (4.19)
where
N
(N=DS3;+2 (my=1)7'S},
T= = , (4.20)

(N=D)S3 +>, (M, -DS},
i=1
_(M _1) Z =1 (yy Y) W W/ srswr( srs)_
(mO/CV SN (O, p MY 1T (1+CV /m,), and
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CVyZ,. = Sii /Y denotes the within-cluster relative variance
of the y-variable. Similarly,

Deft? (V) =1+ (m, -yt +W,, @21)

where W, =W, /V,...( m) = (m, /CVHYN (Q,/p;M?)
(D,/Y) (1+cv2 /my), and D, and cv2 are defined
with the transformed variable d (d; =y, — —Y) analogously
to ¥, and CVfl, respectively. (Detailed derivations of
expressions (4.19) and (4.21) are available from the
authors.) For the case with m; =m, for all i, the difference
in the design effects given in (4.19) and (4.21) reduces to
(3.7) or (4.16). There is no contribution from the second
stage sampling to the difference.

Coming back to Thomsen et al. (1986) who studied the
effect of using an outdated measure of size on the variance,
the above discussion on ¥ parallels with their discussion.
The only difference is that they assumed a without-
replacement sampling scheme at the second stage. Note,
however, that the definition of t in Thomsen ef al. (1986) is
slightly different from (4.20) and from 6 in section 4.2.
However, there is a close connection between them. To see
this, let us write the T as a function of some quantities b,’s
associated with PSUs as follows:

(N-1)S3

zbz yi

(N=DSJ, +Z (M, =1)S,
i=1

T(bi) =

Then the t in Thomsen et al. (1986) is obtained with b, =1,
the T in example 4.5 with —1/(m,—1), and 9 in section 4.2
with (M, -D)/{ZX, (M, -1)/(N- )}. Equating Kish’s
formula (4.18) for Y to (4.19) for Y they obv10usly over-
looked that the design effects for Y and ¥ can be very
different.

For more general cases, Kish (1987) proposed the
following popular formula for Y :

G
0> n, w2
4 4

Deft, (?) = LZ
G
oo
g=1

=(1+cev2)l+p@@-1].

This was obtained by applying (4.5) (or (4.6)) and (4.18)
recursively to incorporate the effects of both clustering and
unequal weights. Gabler, Haeder and Lahiri (1999) justified
the above formula for Y using a superpopulation model
defined for the cross-classification of N clusters and G
weighting classes. However, the difference between the
design effects for ¥ and Y cannot be exposed by such a
model-based approach, since y, is treated as a random
variable while w, as fixed. Under this approach, Defti )

[t + (i —1)]

11

differs from Defti(Y ) only by a factor of (M /M)?,
although the actual difference can be much more
pronounced as we have showed in this paper (e.g.,
expressions (3.7) and (4.23)).

4.5 More General Cases

Weighting survey data involves not only sampling
weights but also various weighting adjustments such as
post-stratification, raking, and nonresponse compensation.
We consider these general cases here.

We can rewrite the first-order Taylor approximation to
the weighted mean estimator ¥ = Y/M given in (3.2) as
(Y Y)/Y = (Y Y)/Y+(M M)/ M. Taking variance
on both sides,

CV2(F)=CV2(Y)+CV2(M)

+2R,(Y,M)CV,(Y)CV, (M), (422)

where CV2 (Y ), CV (Y ), CV2 (M ) are the relative vari-
ances of Y , and M respectlvely, and R, (Y M) is the
correlation coefficient of ¥ and M Wlth respect to the
complex sampling design p and any weighting adjustments.
Since the relative variances of s1mple sample total and mean
Y, and F, are CV. .(Y,)=CV. . (F,)=m 'CV}

SIS

under srswr of size m, it follows from (4.22) that
2 Py 2 v
Deft) (Y) = Deft), (Y)
sy A sy 2
+2R, (Y, M)V ,(»)Deft,, (Y)+V?2 (»), (4.23)

where V (y)=CV, (M)/CV,, (7,.) is nonnegative.
As an 1llustrat10n con51der a binary variable y, where
CV2 =(1-Y)/Y and, thus, V,(») can be arbitrarily
large as ¥ approaches 1 or small as Y approaches zero
assuming CV, (M )#0. When V (y) is near zero, the
two design effects are nearly equal. Otherwise, one is larger
than the other depending on the values of V , (y) and
R, (Y M ). When the sampling welghts are benchmarked
to the known population size M, Y and Y have the same
design effect since M =M and Cv, (M )=0. In this case,
Y is not affected by the benchmarkmg but Y=MY,

which is a ratio estimator. Note that poststratification or
raking procedures may be used if population size infor-
mation is available at subpopulation level and we also get
equlvalent demgn effects. In general, however, we have
Deft (Y) > Deft (Y) if

R (Y M)> IM or
2 Deft, (¥)

R (Y M)>_1M 4.24)
2¢v,(Y)

and vice versa.

Statistics Canada, Catalogue No. 12-001
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It is illuminating to look at some spe01ﬁc situations. For
example, if R, Y, M) > 0, then Deft? (Y)>Deft Y),
however, a negatlve correlation (ze R, (Y M ) <0)
doesn’t necessarily lead to Deft’ (Y )< Deft (Y ). For a
special case of R, 7, M )=0, the dlfference is glven by

V(M)

Deft? (V) - Deft® (Y)= — 2"
g g CVS%SWT (ysrs)

(4.25)

Figure 1 shows graphically the relation between the two
design effects. The expression in (4.23) is plotted for some
fixed values of R, (7, M ) and V (y). The solid line
passing through the origin which represents equal design
effects is the reference line. As the graphs show, the
companson is not clear-cut. When R, (Y M) <0,
Deft’ (Y ) > Deft? (Y ) for small Deft’ (Y ) but the relation
flips over as Deft (Y) grows larger.

Hansen et al. (1953 Vol. 1, pages 338 —339) indicated
that R, (Y M) would often be close to 0. Under this
51tuat10n expression (4.25) is alsq written as Deft (Y )=
Deft? (Y) [1+CV (M)/CV (Y)] from which we get
Deft (Y )> Deft’ (Y ). This special case was studied by
Jang (2001) However this doesn’t seem necessary as can
be seen in the following example.

Example 4.6 To illustrate the relationship between the

design effects for Y and Y, we used a data set for the
adults collected from the U.S. Third National Health and

12
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Design effect for mean

(a) V,(» =10

Nutrition Examination Survey (NHANES III), which is
given as a demo file in WesVar version 4.0. NHANES III is
a nationwide large-scale medical examination survey based
on a stratified multistage sampling design, for which the
Fay’s modified balance repeated replication (BRR) method
was employed for variance estimation. (See Judkins 1990
for more details on Fay’s method.) We used only 19,793
records with complete responses to those characteristics
listed in Table 1. Note that the weight in the demo file is
different from the NHANESIII final weight that was
obtained by poststratification. For more detailed information
on the demo file, see Westat (2001).

Table 1 presents the design effects for Y and Y, and
component terms of (4.23) for the selected characteristics.
Note that V , () monotonically decreases in CV, given
that m =19, 793 and cv, (M)=3.2%. Although V (»)
tends to be the determmant factor in the difference of the
design effects, R, (Y M) can be important when it is
negative. For example for two race/ethnicity characteristics,
African American and Hispanic, the negative values, —0.67
and —0.24 of R, v, M ) were responsible for Deft (Y )<
Deft? (Y ). Some design effects for Y are huge. Thrs is not
the case with the NHANES III poststratified final weights,
with which ¥ and Y have the same design effect. This
illustrates the importance of benchmarking weight
adjustments for total estimates.

Design effect for total

Design effect for mean

(b) V,(»n=25

Figure 1. Plots of Deft (Y ) versus Deft2 (Y ) for (@) V,(»)=1.0 (b) V ,(y)=2.5. The solid line corresponds to

Deft? (Y) Deft (Y) Other llnes correspond to R (Y M)——O9

respectlvely
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Table 1
Comparison of the design effects for the weighted total and mean using a subset of the adult data file from the U.S.
Third National Health and Nutrition Examination Survey (NHANES III)
Mean Total .

Estimate Deft? cv Estimate Deft® cv cvy F (}% M ) V,(») S (M

Characteristic [ pt =
2ev,(Y)
Has smoked 100+ Yes 053 413 0014 98,397,795 3131 0038 0944 020 483 ~0.58
cigarettes in life?
Has diabetes? Yes 0.05 1.75 0.040 9,783,307 1.92 0.042 4.246 -0.34 1.07 —-0.31
No 0.95 1.75 0.002 176,341,218 393.47 0.033 0.236 0.34 19.35 —5.53
Has hypertension/ Yes 0.23 342 0.024 42,939,866 796 0.037 1.826 —-0.18  2.50 —-0.37
. AFRICAN 0.12 7.64 0.054 21,567,028 421 0.040 2762 —0.67 1.65 —0.11
Race/Ethnicity
AMERICAN*
HISPANIC* 0.05 6.70 0.079 9,550,326 6.48 0.078 4.300 —0.24 1.06 —0.08
Gender MALE 0.48 1.40 0.009 88,725,967 19.18 0.033 1.048 —0.11 435 —1.55
FEMALE 0.52 1.40 0.008 97,398,559 2539 0.034 0.954 0.11 4.77 —1.70
Number of cigarettes
— 5.25 6.42 0.037 977,225,826  10.51 0.047 2.044 —0.09 223 —0.17

smoked per day
Population Size — — — — 186,124,526 — 0.032 — — — —

Note: * denotes the cases where the design effect for Y is smaller than that for Y.

5. Conclusion

We studied the design effects of the two most widely
used estimators for the population mean and total in sample
surveys under various with-replacement sampling schemes.
We do not think the employment of with-replacement
sampling is necessarily a serious limitation because we can
see things more clearly without muddling the math with
probably unnecessary complications with without-replace-
ment sampling schemes. Furthermore, the effect of the finite
population correction is largely canceled out in our
formulation of the design effect and so the results are quite
comparable with traditional design effects for without-
replacement sampling. Therefore, our findings should be
useful in practice. We summarize our key findings below.

Kish’s well-known approximate formulae for the design
effect for (ratio type) weighted mean estimators are not
easily generalized in their form and concepts to more
general problems, especially weighted total estimators
contrary to what many people would perceive. In fact, ¥
and Y often have very different design effects unless the
sampling design is self-weighting or the sampling weights
are benchmarked to the known population size. In addition,
the design effect is in general not free from the distribution
of the study variable even for the mean estimator, let alone
the total estimator. Furthermore, the correlation of the study
variable with the weights used in estimation can be an
important factor in determining the design effect. Therefore,
apart from its original intention, the design effect measures
not only the effect of a complex sampling design on a
particular statistic but also the effects of the distribution of

the study variable and its relations to the sampling design on
the statistic. As complex survey software packages routinely
produce the design effect, it seems appropriate to warn the
user of the packages of these rather obscure facts about the
design effect.
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