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Abstract 

Robust small area estimation is studied under a simple random effects model consisting of a basic (or fixed effects) model 

and a linking model that treats the fixed effects as realizations of a random variable. Under this model a model-assisted 

estimator of a small area mean is obtained. This estimator depends on the survey weights and remains design-consistent. A 

model-based estimator of its mean squared error (MSE) is also obtained. Simulation results suggest that the proposed 

estimator and Kott’s (1989) model-assisted estimator are equally efficient, and that the proposed MSE estimator is often 

much more stable than Kott’s MSE estimator, even under moderate deviations of the linking model. The method is also 

extended to nested error regression models. 
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1. Introduction 
 
Unite-level random effects models are often used in 

small area estimation to obtain efficient model-based 

estimators of small area means. Such estimators typically do 

not make use of the survey weights (e.g., Ghosh and 

Meeden 1986; Battese, Harter and Fuller 1988; Prasad and 

Rao 1990). As a result, the estimators are not design 

consistent unless the sampling design is self-weighting 

within areas. We refer the reader to Ghosh and Rao (1994) 

for an appraisal of small area estimation methods. 

Kott (1989) advocated the use of design-consistent 

model-based estimators (i.e., model assisted estimators) 

because such estimators provide protection against model 

failure as the small area sample size increases. He derived a 

design-consistent estimator of a small area mean under a 

simple random effects model. This model has two 

components: the basic (or fixed effects) model and the 

linking model. The basic model is given by 

, 1, 2, ..., ; 1, 2, ...,ij i ij iy e j � i m= θ + = =  (1) 

where the ijy  are the population values and the ije  are 

uncorrelated random errors with mean zero and variance 2

iσ  

for each small area ( 1, 2, ..., )i m= . For simplicity, we take 

iθ   as  the  small  area  mean  / ,i j ij iY y �= ∑   where i�  is 

the number of population units in the thi  area. Note that 

i i iY E= θ +  and / 0i j ij iE e �= ∑ ≈  if i�  is large. 

The linking model assumes that iθ  is a realization of a 

random variable satisfying the model 

i ivθ = µ +  (2) 

where the iv  are uncorrelated random variables with mean 

zero and variance 2.vσ  Further, { }iv  and { }ije  are assumed 

to be uncorrelated. 

Assuming that the model (1) also holds for the sample 

{ , 1, 2, ..., ; 1, 2, ..., }ij iy j n i m= =  and combining the 

sample model with the linking model, Kott (1989) obtained 

the familiar unit-level random effects model 

, 1, 2, ..., ; 1, 2, ..., ,ij i ij iy v e j n i m= µ + + = =  (3) 

also called the components-of-variance model. It is 

customary to assume equal variances 2 2,iσ = σ  although the 

case of random error variances has also been studied (Kleffe 

and Rao 1992; Arora and Lahiri 1997). 

Assuming 2 2,iσ = σ  Kott (1989) derived an efficient 

estimator ˆ iKθ  of iθ  which is both model-unbiased under (3) 

and design-consistent. He also proposed an estimator of its 

mean squared error (MSE) which is model unbiased under 

the basic model (1) as well as design-consistent. But this 

MSE estimator can be quite unstable and can even take 

negative values, as noted by Kott (1989) in his empirical 

example. Kott (1989) used his MSE estimators mainly to 

compare the overall reduction in MSE from using ˆ iKθ  in 

place of a direct design-based estimator iwy  given by (4) 

below. He remarked that more stable MSE estimators are 

needed. 

The main purpose of this paper is to obtain a pseudo 

empirical best linear unbiased prediction (EBLUP) 

estimator of iθ  which depends on the survey weights and is 

design-consistent (section 2). A stable model-based MSE 

estimator is also obtained (section 3). Results of a 

simulation study in section 4 show that the proposed MSE 

estimator is often much more stable than the MSE estimator 

of Kott, as measured by their coefficient of variation, even 

under moderate deviations of the linking model (2). Results 

under the simple model (3) are also extended to a nested 

error regression model (section 5). 
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2. Pseudo EBLUP estimator 
 
Suppose ijwɶ  denotes the basic design weight attached to 

the thj  sample unit ( 1, 2, ..., )ij n=  in the thi  area 

( 1, 2, ..., ).i m=  A direct design-based estimator of iθ  is 

then given by the ratio estimator 

iw ij ij ij ij ijj j j
y w y w w y= =∑ ∑ ∑ɶ ɶ  (4) 

where / .ij ij j ijw w w= ∑ɶ ɶ  The direct estimator iwy  is design-

consistent but fails to borrow strength from the other areas. 

To get a more efficient estimator, we consider the 

following reduced model obtained from the combined 

model (3) with 2 2:iσ = σ  

( )

,

iw ij i ijj

i iw

y w v e

v e

= µ + +

= µ + +

∑
 (5)

 

where the iwe  are uncorrelated random variables with mean 

zero and variance 2 2.i j ijwδ = σ ∑  The reduced model (5) is 

an area-level model similar to the well-known Fay-Herriot 

model (Fay and Herriot 1979). It now follows from the 

standard best linear unbiased prediction (BLUP) theory 

(e.g., Prasad and Rao 1990) that the BLUP estimator of 

i ivθ = µ +  for the reduced model (5) is given by 

,i w ivθ = µ +ɶ ɶ ɶ  (6) 

where 

( )i iw iw wv y= γ − µɶ ɶ  

with  /w i iw iw i iwyµ = ∑ γ ∑ γɶ  and 2 2/ ( )iw v v iγ = σ σ + δ . Note 

that iθɶ  is different from the BLUP estimator under the full 
model (3). We therefore denote iθɶ  as a pseudo-BLUP 
estimator. The estimator (6) may also be written as a convex 

combination of the direct estimator iwy  and wµɶ : 

(1 ) .i iw iw iw wyθ = γ + − γ µɶ ɶ  (7) 

The estimator iθɶ  depends on the parameters 
2

vσ  and 2σ  

which are generally unknown in practice. We therefore 

replace 2

vσ  and 2σ  in (7) by model-consistent estimators 
2ˆ
vσ  and 2σ̂  under the original unit-level model (3) to obtain 

the estimator 

ˆ ˆ ˆ ˆ(1 ) ,i iw iw iw wyθ = γ + − γ µ  (8) 

where 

( )2 2 2 2ˆ ˆ ˆ ˆ
iw v v ijj

wγ = σ σ + σ ∑  

and 

ˆ ˆˆ .w iw iw iwi i
yµ = γ γ∑ ∑  

The estimator ˆ iθ  will be referred to as pseudo-EBLUP 

estimator. We use standard estimators of 2

vσ  and 2,σ  based 

on the within-area sums of squares 

2
( )w ij i

i j

Q y y= −∑∑  

and the between-area sums of squares 

2( ) ,b i i

i

Q n y y= −∑  

where i i i i iy n y n= ∑ ∑  is the overall sample mean. We 

have 

2ˆ
w i

i

Q n m
 

σ = − 
 
∑  

and 2ˆ
vσ =max 2( , 0)vσɶ  where 

2 2ˆ[ ( 1) ] /v bQ m n∗σ = − − σɶ  

with 

2 .i i i

i i i

n n n n∗ = −∑ ∑ ∑  

It may be noted that 2

vσ  and 2σ  are either not estimable or 

poorly estimated from the reduced model (5) due to 

identifiability problems. Following Kackar and Harville 

(1984), it can be shown that the pseudo-EBLUP estimator 

iθ  is model-unbiased for iθ  under the original model (3) 

for symmetrically distributed errors { }iv  and { },ije  not 

necessarily normal. It is also design consistent, assuming 

that 2
i j ijn w∑  is bounded as in  increases, because ˆ iwγ  

converges in probability to 1 as in →∞  regardless of the 
validity of the model (3), assuming 2ˆ

vσ  and 2σ̂  converge in 

probability to some values, say, 2ˆ
v

∗σ  and 2ˆ .∗σ  

Kott’s (1989) model-based estimator of iθ  is obtained by 

taking a weighted combination of iwy  and ( ) ,i
l i l lc y≠∑  that 

is, 

( ) ( )( , ) (1 ) ,i i
i i i iw i l l

l i

f c y c y
≠

α = − α + α ∑  

and then minimizing the model mean squared error (MSE) 

of ( )( , )i

i if cα  with respect to iα  and ( )i

lc  subject to model-

unbiasedness condition: ( ) 1.i
l i lc≠∑ =  This leads to 

( )ˆ ˆ ˆ( , )i

iK i if cθ = α  (9) 

with 

2 22 2 ( ) ( ) 2 2

ˆ

ˆ ˆ ˆ ˆ1 ( / )

i

i i

ij ij l i l v
j j l i l i

w w c n c
≠ ≠

α =

   
+ + + σ σ   

    
∑ ∑ ∑ ∑

 

and 
( ) 2 2 1 2 2 1ˆ ˆ ˆ ˆ ˆ( / ) ( / ) .
i

l v l v h

h i

c n n
− −

≠

   = σ σ + σ σ +   ∑  
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The estimator ˆ iKθ  is also model-unbiased and design-

consistent. In a previous version of this paper, we 

proposed an estimator similar to (9). It uses the best 

estimators of µ  under the unit-level model, based on the 
unweighted means ,iy  rather than ˆ ,wµ  the best estimator 

of µ  under the reduced model (4), based on the survey-
weighted means .iwy  

 
3. Estimators of MSE 

 
It is straightforward to derive the MSE of the pseudo-

BLUP estimator iθɶ  under the unit level model (3). We have 

MSE 2 2 2 2 2

1 2( ) ( ) ( , ) ( , )i i i i v i vE g gθ = θ − θ = σ σ + σ σɶ ɶ  (10) 

with 

2 2 2

1 ( , ) (1 )i v iw vg σ σ = − γ σ  

and 

2 2 2 2
2 ( , ) (1 ) .i v v iw iwi

g σ σ = σ − γ γ∑  

The leading term, 2 2

1 ( , )i vg σ σ  is of order (1),O  while the 

second  term,  2 2

2 ( , ),i vg σ σ  due to estimation of µ  is of 
order 1( )O m−  for large .m  

A naïve MSE estimator of the pseudo-EBLUP estimator 
ˆ

iθ  is obtained by estimating MSE ˆ( )iθ  given by (10): 

2 2 2 2

N 1 2
ˆ ˆ ˆ ˆ ˆmse ( ) ( , ) ( , ).i i v i vg gθ = σ σ + σ σ  (11) 

But (11) could lead to significant underestimation of 

MSE ˆ( )iθ  because it ignores the uncertainty associated with 
2ˆ
vσ  and 2ˆ .σ  Note that 

2ˆ ˆMSE( ) MSE( ) ( )i i i iEθ = θ + θ − θɶ ɶ  (12) 

under normality of the errors { }jv  and { }ije  so that 

MSE ( )iθɶ  is always smaller than MSE ˆ( );iθ  see Kackar and 

Harville (1984). 

To  get  a  “correct”  estimator  of  MSE ˆ( ),iθ  we first ap-

proximate the second order term 2ˆ( )i iE θ − θɶ  in (12) for 

large ,m  assuming that { }iv  and { }ije  are normally 

distributed. Following Prasad and Rao (1990), we have 

2 2 2

3
ˆ( ) ( , )i i i vE gθ − θ = σ σɶ  (13) 

where the neglected terms are of lower orders than 1,m−  

and 

2 2 2 2

3

2 2 2 2 2

2 2 2 2

( , ) (1 )

ˆ{ ( ) 2( / )Cov( , )

ˆ( / ) Var( )};

i v iw iw v

v v v

v

g

V

−σ σ = γ − γ σ

σ − σ σ σ σ

+ σ σ σ

ɶ ɶ

 (14)

 

see Appendix 1. The variances and covariances of 2ˆ
vσ  

and 2σ̂  are also given in the Appendix 1. It can be shown 

that 2 2 2 2

1 3
ˆ ˆ ˆ ˆ( , ) ( , )i v i vg gσ σ + σ σ  is approximately unbiased 

for 2 2

1 ( , )i vg σ σ  in the sense that its bias is of lower order 

than 1m−  (see Appendix 2). Similarly, 2 2

2
ˆ ˆ( , )i vg σ σ  and 

2 2

3
ˆ ˆ( , )i vg σ σ  are approximately unbiased for 2 2

2 ( , )i vg σ σ  

and 2 2

3 ( , ),i vg σ σ  respectively. It now follows that an 

approximately model-unbiased estimator of MSE ˆ( )iθ  is 

given by 

2 2 2 2 2 2

1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆmse( ) ( , ) ( , ) 2 ( , ).i i v i v i vg g gθ = σ σ + σ σ + σ σ  (15) 

For the estimator ˆ iKθ  given by (9), Kott (1989) proposed an 

estimator of MSE as 

2

2 ( )ˆ ˆ ˆmse( ) (1 2 ) ( ) ,i
iK i iw i iw l l

l i

v y y c y∗

≠

 
θ = − α + α − 

 
∑  (16) 

where ( )iwv y∗  is both a design-consistent estimator of the 

design-MSE of iwy  and a model-unbiased estimator of the 

model-variance of iwy  under the basic model (1). Since ˆ iα  

converges in probability to zero as ,in →∞  it follows from 

(16) that mse ˆ( )iKθ  is also both design-consistent and model 

unbiased assuming only the basic model (1). However, 

mse ˆ( )iKθ  is unstable and can even take negative values 

when  ˆ iα   exceeds  0.5,  as  noted  by  Kott  (1989). 

Note that our MSE estimator, mse ˆ( )iθ  is based on the 

full model (3) obtained by combining the basic model (1) 

with the linking model (2). However, our simulation results 

in section 4 show that it may perform well even under 

moderate deviations from the linking model. 

 
4. Simualtion study 

 
We conducted a limited simulation study to evaluate 

the performances  of  the  proposed  estimator  ˆ ,iθ   given  

by (8), and its estimator of MSE, given by (15), relative to 

Kott’s estimator ˆ ,iKθ  given by (9), and its estimator of 

MSE, given by (16). We studied the performances under 

two different approaches: (i) For each simulation run, a 

finite population of 30m =  small areas with 200i� =  

population units in each area is generated from the 

assumed unit-level model and then a PPS (probability 

proportional to size) sample within each small area is 

drawn independently, using 20.in =  (ii) A fixed finite 

population is first generated from the assumed unit-level 

model and then for each simulation run a PPS sample 

within each small area is drawn independently, employing 

the fixed finite population. Approach (i) refers to both the 

design and the linking model whereas approach (ii) is 

design-based in the sense that it refers only to the design. 

The errors { }iv  and { }ije  are assumed to be normally 

distributed in generating the finite populations { ,ijy  

1, 2, ..., 30; 1, 2, ..., 200}.i j= =  We considered two cases: 

(1) The linking model (2) is true with 50µ = . (2) The 

linking model is violated by letting µ  vary across areas: 
50, 1, 2, ..., 10; 55, 11, 12, ...,i ii iµ = = µ = = 20; iµ =  60, 
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21, 22, ..., 30.i =  To implement PPS sampling within 

each area, size measures ( 1, 2, ..., 30;ijz i = 1, 2, ...,j =  

200)  were generated from an exponential distribution 

with mean 200. Using these z -values, we computed 

selection probabilities / jij ij ijp z z∑=  for each area i  and 

then used them to select PPS with replacement samples of 

sizes ,in n=  by taking 20,n =  and the associated sample 

values { }ijy  were observed. 

The basic design weights are given by 1 1
ij ijw n p− −=ɶ  so 

that 1 1/ .jij ij ijw p p− −∑=  Using these weights and the 

associated sample values ijy  we compute estimates ˆ iθ  and 
ˆ

iKθ  and associated estimates of MSE, and also the ratio 

estimate iwy  for each simulation run; the formula for 

( )iwv y∗  under PPS sampling is given in Appendix 3. This 

process was repeated R = 10,000 times to get from each run 
( 1, 2, ..., )r R= ˆ ( )i rθ  and ˆ ( )iK rθ  and associated MSE 

estimates mse ˆ( ( ))i i rθ  and mse ˆ( ( ))i iK rθ  and also the direct 

estimate ( ).iwy r  Using these values, empirical relative 

efficiencies (RE) of ˆ iθ  and ˆ iKθ  over iwy  were computed as  

RE ˆ( )iθ =MSE ( ) /iwy∗ MSE ˆ( )i∗ θ  

and 

RE ˆ( )iKθ =MSE ( ) /iwy∗ MSE ˆ( ),iK∗ θ  

where MSE ∗  denotes the MSE over R = 10,000 runs. For 
example, MSE ˆ( )i∗ θ = 2ˆ[ ( ) ( )] / ,r i ir Y r R∑ θ −  where ( )iY r  is 

the thi  area population mean for the thr  run. Note that 

( )iY r  remains the same over the runs r  under the design-

based approach because the finite population is fixed over 

the simulation runs. 

Similarly, the relative biases of the MSE estimators were 

computed as 

RB ˆ ˆ ˆ ˆ[mse( )] [MSE ( ) mse( )] /MSE ( )i i i iE∗ ∗ ∗θ = θ − θ θ  

and 

RB ˆ ˆ ˆ ˆ[mse( )] [MSE ( ) mse( )] / MSE ( ),iK iK iK iKE∗ ∗ ∗θ = θ − θ θ  

where E∗  denotes the expectation over R = 10,000 runs. 
For example, *

ˆmse( )iE θ = ˆmse( ( )) / .r i r R∑ θ  Finally, the 

empirical coefficient of variation (CV) of the MSE 

estimators were computed as 

CV ˆ[mse( )]iθ = 1/2ˆ ˆ[MSE {mse( )}] /MSE ( )i i∗ ∗θ θ  

and 

CV 1/2ˆ ˆ ˆ[mse( )] [MSE {mse( )}] /MSE ( ).iK iK iK∗ ∗θ = θ θ  

Note that 
2ˆ ˆ ˆMSE [mse( )] [mse( ( )) MSE ( )] /ri i ir R∗ ∗∑θ = θ − θ  

and  a  similar  expression  for  ˆMSE [mse( )].iK∗ θ  

Table 1 reports summary measures of the values of 

percent RE, RB   and CV for cases (1) and (2) under 
approach (i). Summary measures under approach (ii) are 

reported in Table 2. Summary measures considered are the 

mean and the median (med) over the small areas 1,i =  

2, ..., 30.  

 
Table 1 

Relative efficiency (RE) of estimators, absolute relative bias (|RB|) 
and coefficient of variation (CV) of MSE estimators 

( 5.0, 20):nσ = =  Approach (i) 
 

vσ   RE% |RB|% CV% 

  ˆ
iKθ  ˆ

iθ  ˆmse( )iKθ  ˆmse( )iθ  ˆmse( )iKθ  ˆmse( )iθ  

Case 1 

1 Mean 190 177 15.3 3.5 148 25 

 Med 190 182 14.8 2.6 148 25 

2 Mean 126 123 5.1 3.2 48 8 

 Med 127 124 5.6 2.9 48 8 

3 Mean 113 111 3.5 2.7 35 6 

 Med 112 111 3.2 3.0 35 6 

Case 2 

1 Mean 108 103 10.4 7.9 39 6 
 Med 108 104 11.1 7.7 38 5 

2 Mean 108 104 13.3 8.9 39 6 
 Med 108 104 13.6 7.9 37 6 

3 Mean 104 103 11.5 7.2 37 5 
 Med 105 105 13.1 8.0 36 6 

 

Case 1: iµ = 50, i = 1, 2, …, 30; Case 2: iµ = 50, i = 1, 2, …, 10; 

iµ = 55, i = 11, 12, …, 20; iµ = 60, i = 21, 22, …, 30. 

 
It is clear from Tables 1 and 2 that ˆ iKθ  and ˆ iθ  perform 

similarly with respect to RE which decreases as /vσ σ  
increases. Under approach (ii), RE is large for both cases 

1 and 2 when / 0.4,vσ σ ≤  whereas it decreases significantly 

under approach (i) if the linking model is violated (case 

2); the direct estimator iwy  is quite unstable under 

approach (ii). 

Turning to the performance of MSE estimators under 

approach (i), Table 1 shows that RB   of mse ˆ( )iθ  is 

negligible ( 4%)<  when the linking model holds (Case 1) 

and that it is small ( 10%)<  even when the linking model is 

violated, although it increases. The estimator mse ˆ( )iKθ  has 

a larger RB   but it is less than 15%.  The  CV  of  mse ˆ( )iθ  

is much smaller than the CV of mse ˆ( )iKθ  for both Cases 1 

and 2. For example, when the model holds (Case 1) the 

median CV is 25% for mse ˆ( )iθ  compared to 148% for 

mse ˆ iKθ   when  1;vσ =   the  median  CV  decreases  to  8% 

for mse ˆ( )iθ  compared to 48% for mse ˆ( )iKθ  when 2.vσ =  

This pattern is retained when the model is violated (Case 2). 

It may be noted that the probability of mse ˆ( )iKθ  taking a 

negative value is quite large (>0.3) when / 0.4.vσ σ ≤  

Under approach (ii), Table 2 shows that RB   of mse ˆ( )iθ  

is larger than the value under approach (i) and ranges from 

15% to 25%. On the other hand, RB   of mse ˆ( )iKθ  is smaller 

and ranges from 4% to 15%. The CV of  mse ˆ( ),iKθ  how-
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ever, is much larger than under approach (i). For example, the 

median CV for Case 1 is 295% compared to 38% for 

mse ˆ( )iθ  when 1vσ =  which decreases to 122% compared 

to 23% when 2.vσ =  A similar pattern holds for case 2 

where the fixed finite population is generated from the model 

with varying means. 

 
Table 2 

Relative efficiency (RE) of estimators, absolute relative bias (|RB|) 
and coefficient of variation (CV) of MSE estimators 

( 5.0, 20):nσ = =  Approach (ii) 
 

vσ   RE% |RB|% CV% 

  ˆ
iKθ  ˆ

iθ  ˆmse( )iKθ  ˆmse( )iθ  ˆmse( )iKθ  ˆmse( )iθ  

Case 1 

1 Mean 283 281 14.2 25.4 289 39 

 Med 275 279 15.0 24.7 295 38 

2 Mean 180 182 7.3 19.2 115 24 

 Med 177 181 6.9 18.7 122 23 

3 Mean 129 129 4.8 14.8 68 24 

 Med 129 128 4.2 13.9 65 24 

Case 2 

1 Mean 278 276 15.7 26.8 291 41 

 Med 271 275 16.6 26.2 297 40 

2 Mean 175 177 8.8 20.7 117 26 

 Med 173 177 8.5 20.3 124 25 

3 Mean 124 124 6.3 16.2 70 25 

 Med 125 124 6.8 15.5 67 26 
 

Case 1: iµ = 50, i = 1, 2, …, 30; Case 2: iµ = 50, i = 1, 2, …, 10; 

iµ = 55, i = 11, 12, …, 20; iµ = 60, i = 21, 22, …, 30. 

 
To reduce RB   of mse ˆ( )iθ  under approach (ii), one could 

combine it with mse ˆ( )iKθ  by taking a weighted average, but 

it appears difficult to chose the appropriate weights. The 

weighted average will be more stable than mse ˆ( ).iKθ  

 
5. �ested error regression model 

 
The results in sections 2 and 3 can be extended to nested 

error regression models 

, 1, 2,..., ; 1, 2, ...,ij ij i ij iy x v e j n i m′= β + + = =  (17) 

using the results of Prasad and Rao (1990), where ijx  is a 

p -vector of auxiliary variables with known population 

mean iX  and related to ,ijy  and β  is the p -vector of 

regression coefficients. The reduced model is given by 

iw iw i iwy x v e′= β + +  (18) 

with iwx′ .j ij ijw x∑=  Model-consistent estimates 2ˆ
vσ  and 

2σ̂  are obtained from the unit-level model (17), employing 

either the method of fitting constants (Prasad and Rao 1990) 

or REML (restricted maximum likelihood) estimation 

(Datta and Lahiri 1997). 

 

The pseudo-EBLUP of i i iX v′θ = β +  is given by 

ˆ ˆˆ ˆ(1 ) ,i iw iw iw i wy X ′θ = γ + + γ β  (19) 

where 

( ) ( )1ˆ ˆ ˆ .w iw iw iw iw iw iwi i
x x x x

−
′β = γ γ∑ ∑  

An approximate model-unbiased estimator of MSE ˆ( )iθ  is 

given by (15) with 

2 2 2

1
ˆˆ ˆ ˆ( , ) (1 )i v iw vg σ σ = − γ σ  

as before, 

( )

2 2
2

1
2

ˆ ˆ( , )

ˆ ˆ ˆˆ ( ) ( )

i v

v i iw iw iw iw iw i iw iw iwi

g

X x x x X x x
−

σ σ =

′′σ − γ γ − γ∑
 

and 2 2

3
ˆ ˆ( , ),i vg σ σ  obtained from (14), involves the estimated 

variances and covariances of 2

vσɶ  and 2ˆ .σ  The latter can be 

obtained from Prasad and Rao (1990) for the method of 

fitting constants and from Datta and Lahiri (1997) for 

REML. 

 
6. Conclusion 

 
We have proposed a model-assisted estimator of a small 

area mean under a simple unit-level random effects model. 

This estimator depends on the survey weights and is design-

consistent. We have also obtained a model-based MSE 

estimator. Results of our simulation study have shown that 

the proposed MSE estimator performs well, even under 

moderate deviations of the linking model. The proposed 

approach is also extended to a nested error regression 

model. 
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Appendix 1 

 
Proof of (13):  
From general results (Prasad and Rao 1990) we have 

2 2 2 2 2ˆ( ) [ ( , ) ( , )],i i i v i vE tr A Bθ − θ ≈ σ σ σ σɶ  

where 2 2( , )i vB σ σ  is the 2 × 2 covariance matrix of 2

vσɶ  and 
2ˆ ,σ  and 2 2( , )i vA σ σ  is the 2 × 2 covariance matrix of 

2 2
, .i i

v

∗ ∗ ∂θ ∂θ
 
∂σ ∂σ 
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Now, noting that 

2 2 2

2 2 2

(1 )
,

(1 )
,

i iw iw iw
iw iw

v v v

i iw iw iw
iw iw

y y

y y

∗

∗

 ∂θ ∂γ γ − γ
= =  

∂σ ∂σ σ 

∂θ ∂γ γ − γ 
= = −  ∂σ ∂σ σ 

 

and 2 2( ) / ,iw v i v iwV y = σ + δ = σ γ  we get 

2 2
2 2 2 2

2 2 2 2

1 /
( , ) [ (1 ) ] ,

/ ( / )

v
i v iw iw v

v v

A −  −σ σ
σ σ = γ − γ σ  

−σ σ σ σ 
 

and hence the result (14). 
 
Covariance matrix of ɶσσσσ2

v  and σ̂σσσ2:   
Under normality, we have 

( )

( )( )

2 4

2 2

14 2 2 4

ˆ( ) 2 ,

( ) 2

( 1) 1 2

ii

v

i i v v

V n m

V n

m n n m n n

−
∗

−

∗ ∗∗

σ = σ −

σ =

 σ − − − + σ σ + σ  

∑

∑ ∑

ɶ  

and 

Cov 2 2 1 2ˆ ˆ( , ) ( 1) ( ),v m n V−
∗σ σ = − − σɶ  

where 

( ) ( )
2 22 3 22 ;i i i i in n n n n n∗∗ = − +∑ ∑ ∑ ∑ ∑  

see Searle, Casella and McCulloch (1992, page 428). 

 
Appendix 2 

 
Proof of 2 2 2 2 2 2

1 1
ˆ ˆ ˆ ˆ[ ( , ) ( , )] ( , ):i v zi v i vE g g gσ σ + σ σ ≈ σ σσ σ + σ σ ≈ σ σσ σ + σ σ ≈ σ σσ σ + σ σ ≈ σ σ   

By a Taylor expansion of 2 2

1
ˆ ˆ( , )i vg σ σ  around 2 2( , )vσ σ  to 

second order and noting that 2 2ˆ( ) 0E σ − σ =  and 
2 2ˆ( ) 0,v vE σ − σ ≈  we get 

2 2 2 2

1 1

2 2 2 2

ˆ ˆ[ ( , ) ( , )]

1
[ ( , ) ( , )],

2

i v i v

i v i v

E g g

tr D B

σ σ − σ σ

≈ σ σ σ σ
 

where 2 2( , )i vD σ σ  is the 2 x 2 matrix of second order 

derivatives of 2 2

1 ( , )i vg σ σ  with respect to 2

vσ  and 2.σ  It is 

easy to verify that 

2 2 2 2 2 2

3

1
[ ( , ) ( , )] ( , ).

2
i v i v i vtr D B gσ σ σ σ = σ σ  

Now, noting that 2 2 2 2

3 3
ˆ ˆ[ ( , )] ( , )i v i vE g gσ σ ≈ σ σ  we get the 

desired result. 

 

Appendix 3 
 
The design-based estimator of variance of iwy  under PPS 

sampling is given by 

2 2
( ) ( ) .

1
iw ij ij iw

j

m
v y w y y

m
= −

−
∑  

Kott (1989) model-assisted variance estimator is 

( )
( )

2 2 2

2 2

( ) { ( ) / ( )} ( )

( )

,
1 2

iw iw iw iw

ij ij ij iw
j j

ij ij ij
j j

v y V y Ev y v y

w w y y

w w w

∗ =

−

=
− +

∑ ∑

∑ ∑

 

where E  and V  denote expectation and variance with 

respect to the basic model (1). 
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