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Confidence Intervals for Proportions With Small Expected Number
of Positive Counts Estimated From Survey Data

EDWARD L. KORN and BARRY 1. GRAUBARD'

ABSTRACT

In the nonsurvey setting, “exact” confidence intervals for proportions calculated using the binomial distribution are
frequently used instead of intervals based on approximate normality when the number of positive counts is small. With
complex survey data, the binomial intervals are not applicable, so intervals based on the assumed approximate normality
of the sample-weighted proportion are used, even if the number of positive counts is small. We propose a simple
modification of the binomial intervals to be used in this situation. Limited simulations are presented that show the coverage
probability of the proposed intervals is superior to that of the normality-based intervals, logit-transform intervals, and
intervals based on a Poisson approximation. Applications are given involving the prevalence of Human Immunodeficiency
Virus (HIV) based on data from the third National Health and Nutrition Examination Survey, and the proportion of users
of cocaine based on data from the Hispanic Health and Nutrition Examination Survey.

KEY WORDS: Binomial confidence interval; Exact confidence interval; Logit transformation; Poisson confidence

interval.

1. INTRODUCTION

With complex survey data, the typical construction of a
1 - « level confidence interval for a proportion of positive
counts for a 0-1 variable is

pxt, (1 -w2)[var(p))'? (1.1)
where p is the sample-weighted estimator of the proportion,
var(p) is the variance estimator of p, and #,(1 - o/2) is
the 1 - /2 quantile of a ¢ distribution with d degrees of
freedom. The estimator var(p) is computed using lineari-
zation or a replication method to reflect the sample design,
including the fact that p is a sample-weighted estimator.
By complex survey data, we mean data obtained from a
multistage design with stratified selection of clusters at the
first stage. For such a sample design, d is usually taken to
be equal to the number of sampled clusters minus the
number of strata (Korn and Graubard 1990). The
confidence interval (1.1), which we shall refer to as the
“linear interval”, is based on the assumption that p is
approximately normally distributed. Under various
reasonable asymptotics, this is known to be true (Krewski
and Rao 1981). The use of the ¢ quantile rather than a
normal-distribution quantile in (1.1) is based on empirical
evidence (Frankel 1971, ch. 7), and it can also be formally
justified using strong assumptions (Korn and Graubard
1990).

When the expected number of positive counts is small,
the approximate normality of p breaks down (Cochran
1977, p. 58). For a simple random sample (or in the
nonsurvey setting), one can avoid the normality assumption

by using the Clopper and Pearson (1934) confidence
interval based on the binomial distribution; see Vollset
(1993) for a complete discussion of confidence intervals for
proportions in the nonsurvey setting. When x positive
responses are seen in a simple random sample of size n, the
Clopper-Pearson 1 -oa level confidence interval
(p,(x,n), p,(x,n)) can be expressed as (Johnson, Kotz
and Kemp 1993, p. 130):

oy o)
p,(x,n) =
vy + v]Fvl’vz(QIZ)
v, F, (1 -a2)
pyx,n) = (1.2)

v, + v3Fv3,v4(1 -a/2)

where v, =2x,v,=2 (n-x+1),v;=2(x+1),v,=2 (n -X)
and F; 4 (P) is the B quantile of an F distribution with d,
and d, degrees of freedom. For one-sided confidence
bounds, « is used instead of 0/2 in the above expressions.
For a simple random sample, these intervals are known to
have coverage probability greater than or equal to their
nominal level, regardless of the expected number of
positive counts. They are sometimes referred to as “exact”
confidence intervals; we shall refer to them as the “binomial
intervals”. :

In this paper we suggest a simple modification to the
binomial intervals to make them applicable for a proportion
estimated from complex survey data. We are especially
interested in the situation when the expected number of
positive counts is small. Many survey analysts would not
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present estimated proportions in this situation, since they
are unreliable. For example, applying the relative-standard-
error criterion for presenting proportions in the 1996
National Household Survey on Drug Abuse (SAMHSA
1998), the estimated proportion of women using cocaine in
Table 7 would not be presented. We believe such
proportions can provide valuable information, but that their
lack of precision needs to be explicitly stated by presenting
confidence intervals. In section 2, we define our proposed
confidence intervals and define intervals based on a logit
transformation and the Poisson distribution that have been
suggested in the literature. Simulation results are presented
in section 3 that compare the intervals. We find that the
proposed intervals behave well in terms of coverage
probability of the true proportion and in terms of their
average width. Two applications are given in section 4
involving large surveys, but where the number of positive
counts is expected to be small. We end with a discussion of
some related work that constructs confidence intervals that
are guaranteed to attain their nominal coverage probability
regardless of the population configuration of counts.

2. PROPOSED AND OTHER CONFIDENCE
LIMITS

For a 1 -a level confidence interval based on a sample
of size n, first define the effective sample size by

._pA-p)

var(p)
and the degrees-of-freedom adjusted effective sample size
by

n

(2.1

2.2)

_p-p | ta-w2))’
T varp) | 1,(1-a/2)

Both »* and nd} are set equal to n when p=0. The
proposed limits substitute ndf for n, and pndf forx in (1.2),
viz. pL(pndf, ndf) and pU(pndf, ndf) (When n is large, the
1 - a/2 quantile of a normal distribution can be used in
place of #,_, (1 - a/2) in (2.2).) For estimating a confi-
dence interval for a proportion on a subdomain of the
population, the sample size » is taken to be equal to the
sample size restricted to the subdomain.

A heuristic justification for this procedure is as follows.
The effective sample size (2.1) is » divided by an estimator
of the design effect of the survey. This seems to be a
reasonable way to incorporate the additional variability of p
due to the complex sampling. For confidence interval
construction, the variability of the variance estimator is also
important. The second fraction in (2.2) takes into account
the fact that var(p) will typically be more variable than a
variance estimator that would be used for simple random
sampling. If d is large, then this factor is close to one and
unneeded. For small d and large » and pn d}, we would like
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the proposed interval to be close to the interval (1.1), which
is appropriate in this situation. Using the fact that
LB =1+z(B) y2(1/u+1/w) forlarge u and w (Johnson
and Kotz 1970, p. 81), this is true, i.e., p pL(pndf,ndf) =
pU(pndf’ndf) -p=t,(1- a/2)[var(p)]1’2
A procedure closely related to the proposed procedure
was developed by Breeze (1990) for use in the U.K.
General Household Survey. This procedure is based on the
simple-random-sampling 1 -a confidence interval
(po, (x),po,(x)) for a Poisson random variable x, which
can be expressed as (Johnson et al. 1993, p. 171):

Ppo,(x) =0.5, (a/2) and po,, (x) =0.5 1, (1 -a/2)

where v, =2x,v, =2(x + 1), and ¥, (B) is the B quantile of
a X* distribution w1th v degrees of freedom. With complex
survey data, the confidence interval is taken to be
(po,(pn*)in", po(pn*)in").

A third procedure for confidence interval construction is
based on a logit transform. For a 1 - a level confidence
interval, the interval is

1 1
( 1 +exp(-LLOGIT) 1 +exp(—ULOGIT))

where
~ A A\ 1/2
P4 -apyDEDI" 5
-p p(1-p)

and
A 1/2

ULOGIT =log—£— +1,(1 - a/2)M— 2.4)

1-p p(1-p)

These intervals, with a normal-distribution quantile instead
of a ¢ distribution quantile, were suggested for use with the
1996 National Household Survey on Drug Abuse
(SAMHSA 1998). When p = 0, in the nonsurvey setting
one might add a small constant to the observed number of
events and nonevents, e.g., 1/2, to be able to calculate the
logit-transform confidence interval (Agresti 1990, pp. 249-
250). In the present setting, when p =0, we set the
confidence interval equal to the binomial interval
(p, (0, n), p,(0,n)).

In applications where it is known before sampling that
the (true) design effect will be greater than 1, various
modifications of the above procedures are possible. For our
proposal, we recommend in this situation truncating the
degrees-of-freedom adjusted effective sample size at n.
That is, if nd} is greater than n, we set its value to », and
define the lower and upper confidence limits to be
p(pn,n) and p (pn,n). For the Breeze intervals, one
could set n” to be n if n*>n. For the linear or logit
intervals, one can use the simple-random-sampling variance
estimator p(1 -p)/n in place of var(p) in (1.1), (2.3) and
(24) if n*>n; see SAMHSA (1998) for additional
truncation suggestions. The justification of these truncation
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procedures is that the design effect may be estimated to be
less than one because of instability of the variance estimator
var(p). This type of instability may be especially large
because p is small (SAMHSA 1998). The effect of these
truncation procedures is to make the confidence intervals
wider and more conservative. In theory, one could also
adjust the estimated effective sample sizes when it is known
before the sampling that the (true) design effect is less than
one. However, to be conservative, we do not recommend
doing this.

Our focus in this paper is on confidence intervals for the
“superpopulation” probability that the outcome Y = 1 rather
that the finite- populatlon proportion. That is, the target
parameter is p = Y., p,/ N rather than P = v, Y,/N,
where Y, has a Bernoulli distribution with parameter Dy
and N is the population size. The simulated coverage
probabilities given in the next section therefore refer to
coverage of p. With this target parameter in mind, we do
not use finite-population correction factors when estimating
var(p) for use in (2.2); additional adjustments to the
design-based variance var (p) for superpopulation inference
are not pursued here (Korn and Graubard 1998). A referee
suggests the possibility of a model-based approach to
estimating a confidence interval for p. However, in our
limited experience, such approaches yield estimators similar
to weighted estimators and offer no advantages for
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inference (Pfeffermann and LaVange 1989; Graubard and
Korn 1996).

If one were interested in a confidence interval for P, we
would recommend using the proposed intervals but with
var(p) in (2.2) containing the finite- populatlon correction
factors. A confidence interval for Z Y, could be
obtained by multiplying the ends of the confldence interval
for P by N, if known, or by an estimator N of N, if not
known. (In theory, one could account for the variability of N,
but this additional variability will be small.) An alternative
approach for estimating a confidence interval for P would
be to modify the usual limits (Guenther 1983) appropriate
for a simple random sample (based on the hypergeometric
distribution) similarly to the way the proposed intervals
modify the binomial intervals.

3. SIMULATIONS

The main simulation results are presented in Tables 1-5.
Table 1 presents the results of simulations in which datasets
of 32 clusters, each with sample size 100, were simulated.
Within cluster i, the number of positive events was
simulated with a binomial distribution with probability
parameter p,. InTable 1, we referto the {p,,i =1, ...,32}
as the cluster probabilities. For the top third of the table, the
cluster probabilities are taken to be the constant p = .1, .02,

Table 1
Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of
32 Clusters and 100 Observations Per Cluster; Sample Weights are 1 Or 10 with Probability 1/2
(Noninformative Sample Weights)

Distribution of Overall Expected Method of calculating confidence bounds

cluster . number

proportions® proportion positive Linear Logit Breeze Proposed
Lower Upper Lower Upper Lower Upper Lower Upper

ey

1 1 320 4.6 55 53 4.6 4.5 4.1 4.8 44

02 .02 64 34 7.1 5.2 4.6 4.5 4.7 4.2 44

.01 .01 32 29 8.0 54 4.5 44 4.5 4.0 4.1

.0025 .0025 8 1.6 9.5 5.5 1.8 3.6 2.2 33 1.8

(172, 1/2)

.05, .15 1 320 43 5.8 55 43 43 3.8 4.7 4.1

.01, .03 .02 64 3.1 7.5 5.2 4.8 43 4.8 4.0 4.5

.00s, .015 .01 32 2.7 8.6 5.2 4.7 4.1 4.9 3.7 44

.00125, .00375 .0025 8 1.5 9.9 54 2.0 34 23 3.1 2.0

(3/4,1/4)

.05, .25 .1 320 3.1 7.8 4.7 5.6 34 5.0 3.6 53

.01,.05 .02 64 2.7 8.6 5.1 53 4.0 54 3.7 5.0

.005, .025 .01 32 22 9.8 5.0 53 3.7 55 33 5.0

.00125, .00625 .0025 8 1.3 10.7 5.3 2.2 3.3 2.5 3.0 22

(a) Fractions in parentheses are the probabilities that the cluster proportions have the stated value.
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Table 2
Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of
32 Clusters and 100 Observations Per Cluster; Informative Sample Weights are 1 or 10 (See Text)

Distribution of Overall  Expected Method of calculating confidence bounds

cluster weighted  number

proportions® proportion  positive Linear Logit Breeze Proposed
Lower Upper Lower Upper Lower Upper Lower Upper

M

1 1 191.0 43 59 5.1 4.9 4.2 44 4.6 4.6

.02 .02 36.9 33 73 53 43 44 44 4.1 4.1

.01 .01 18.4 2.8 8.7 55 4.0 43 43 3.9 3.7

.0025 .0025 4.6 1.3 18.7 6.1 4.8 3.2 4.8 2.8 4.8

(1/2,1/2)

.05,.15 1 191.0 5.0 5.0 6.4 3.7 5.1 32 5.4 3.4

.01,.03 .02 36.9 3.0 7.9 5.4 4.5 4.3 4.6 4.0 43

.005, .015 .01 184 25 9.2 5.4 4.2 4.1 44 3.7 39

.00125, .00375 .0025 4.6 1.3 19.0 6.1 49 3.2 4.9 2.8 49

(3/4, 1/4)

.05,.25 N 191.0 4.7 5.7 7.1 4.1 5.1 3.6 55 3.8

.01, .05 .02 36.9 2.6 8.9 52 52 4.0 53 3.7 4.9

.005, .025 .01 18.4 2.1 10.1 53 4.8 3.8 5.1 34 4.5

.00125, .00625 .0025 4.6 1.2 19.8 59 5.3 3.2 53 2.8 53

(a) Fractions in parentheses are the probabilities that the cluster weighted proportions have the stated value.

Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of
32 Clusters and 100 Observations Per Cluster; Unweighted Analyses

Table 3

Distribution of Expected Method of calculating confidence bounds

cluster Overa.ll number

proportions® proportion positive Linear Logit Breeze Proposed
Lower Upper Lower Upper Lower Upper Lower Upper

M

1 A 320 5.0 4.9 5.7 4.2 49 3.8 52 4.1

.02 .02 64 3.8 6.3 52 4.5 4.7 4.8 4.4 44

.01 .01 32 35 6.8 5.6 4.4 4.7 4.4 43 4.0

.0025 .0025 8 25 8.8 5.6 3.8 4.1 39 3.9 39

(172, 1/2)

.05,.15 N 320 4.5 5.6 5.6 4.2 4.5 37 4.8 4.0

.01, .03 .02 64 34 7.0 5.1 4.8 4.5 4.9 4.1 4.6

.005, .015 .01 32 3.0 7.6 52 4.8 4.4 4.8 39 4.4

.00125, .00375 0025 8 22 9.2 54 43 3.8 43 3.5 43

(3/4, 1/14)

.05, .25 1 320 33 7.7 4.8 5.6 35 5.1 3.7 53

.01, .05 .02 64 2.9 8.1 5.1 5.2 4.1 53 3.8 4.9

.005, .025 .01 32 25 9.2 4.9 5.6 39 5.6 3.5 52

.00125, .00625 .0025 8 2.0 10.4 5.3 5.1 3.8 5.1 33 5.1

(a) Fractions in parentheses are the probabilities that the cluster proportions have the stated value.
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Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of 32
Clusters and 10 Observations Per Cluster; Sample Weights are 1 or 10 with Probability 1/2

Table 4

(Noninformative Sample Weights)
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Distribution of Expected Method of calculating confidence bounds

Overall
cluster roportion number
proportions® prop positive Linear Logit Breeze Proposed

Lower Upper Lower Upper Lower Upper Lower Upper

0y
2 2 64 4.0 6.6 5.2 47 3.1 4.7 4.2 43
N 1 32 3.2 7.8 53 44 3.6 3.8 39 40
025 025 8 1.7 10.2 55 2.1 34 2.1 3.2 24
172, 1/2)
1,3 2 64 3.6 7.0 5.0 49 2.8 34 39 44
.05,.15 g 32 3.0 8.1 5.1 4.6 34 4.0 3.7 42
.0125,.0375 .025 8 1.6 10.6 5.4 2.1 33 2.1 3.1 25
(3/4,1/4)
4,5 2 64 3.1 7.8 4.6 5.3 24 39 33 4.8
.05, .25 1 32 2.5 9.2 4.8 52 3.0 4.6 33 438
.0125, .0625 .025 8 1.5 11.5 53 24 3.2 3.5 3.0 2.8

(a) Fractions in parentheses are the probabilities that the cluster proportions have the stated value.

Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of 32
Clusters and 10 or 100 Observations Per Cluster with Probability 1/2; Sample Weights are 1 or 10 with Probability 1/2

Table 5

(Noninformative Sample Weights)

Distribution of Expected Method of calculating confidence bounds

cluster Overa'll number

proportions® proportion positive Linear Logit Breeze Proposed
Lower Upper Lower Upper Lower Upper Lower Upper

M

.1818 1818 320 5.1 6.0 5.7 5.2 4.2 4.1 52 50

0364 .0364 64 4.1 7.6 5.7 52 5.0 52 438 4.9

.0182 0182 32 34 8.5 5.7 5.0 4.7 5.1 44 4.7

.0045 .0045 8 2.0 12.7 5.9 34 4.0 43 3.6 38

(172, 1/2)

.0909, .2727 .1818 320 5.0 6.4 6.1 4.8 4.2 3.6 5.2 44

.0182, .0545 .0364 64 39 8.1 6.0 5.1 49 5.0 47 48

.0091, .0273 .0182 32 31 9.3 5.8 52 4.5 53 42 49

.0023, .0068 .0045 8 1.8 13.2 59 3.6 3.9 45 35 4.0

(3/4,1/4)

.0909, .4545 .1818 320 3.1 9.9 4.6 7.6 2.5 6.3 33 7.1

.0182, .0909 .0364 64 2.8 10.9 53 7.3 3.9 7.3 3.7 7.0

.0091, .0455 .0182 32 24 11.5 54 6.8 3.9 6.9 3.6 6.5

.0023, .0114 .0045 8 1.6 14.5 5.7 4.0 3.7 5.0 3.3 44

(a) Fractions in parentheses are the probabilities that the cluster weighted proportions have the stated value.



198

.01, or .0025, corresponding to an expected number of
positive events equal to 320, 64, 32, or 8 out of the sample
size of 3200. For the middle third of the table, the cluster
probabilities are taken to be p/2 with probability 1/2 or 3p/2
with probability 1/2, with p as in the first third of the table.
Varying the p, across the clusters induces an intracluster
correlation among the observations. For the middle third of
the table, these correlations (ignoring the sample weights)
are .00278, .0051, .0025 and .0006 corresponding to the
expected number of positive events being 320, 64. 32, or 8,
respectively. For the bottom third of the table, the cluster
probabilities are taken to be p/2 with probability 3/4 or
5p/2 with probability 1/4, corresponding to intraclass
correlations of .0833, .0153, .0076 and .0019. For all
simulations in Table 1, sample weights of 1 or 10 are
randomly assigned with probability 1/2 to each observation
(noninformative weights).

The results presented in Table 1 are appropriate for one-
sided 95% upper and lower confidence limits; ideally the
lack-of-coverage percentages in the table should be less
than or equal to the nominal value of 5.0. The results are
also relevant for two-sided 90% confidence intervals, for
which ideally both the upper and lower values in the table
should both be < 5.0 (Jennings 1987). For each line of the
table, 100,000 datasets were simulated using the random
number generator in SAS (1990, p. 631) to estimate the
probabilities of noncoverage of the confidence limits.

For the linear confidence bounds, the upper confidence
limit falls below the true value more than the 5% nominal
level. Somewhat surprisingly, this is true even with as large
as an expected 320 positive counts, especially with positive
intracluster correlation (middle and bottom third of the
table). For the logit-transform confidence bounds, the
noncoverage appears slightly higher than the nominal level,
especially for the lower limits. Both the Breeze and pro-
posed confidence bounds appear generally conservative.
Simple-random-sampling binomial limits are not appro-
priate for the cases simulated in Table 1 because of the
sample weights and the intracluster correlation (in the
bottom two-thirds of the table). This can be demonstrated
by noting that the lack of coverage for both the upper and
lower binomial bounds are greater than 8% for all the cases
considered in the table (results not shown).

As it is slightly complicated to discuss confidence
interval “lengths” for one-sided bounds, we restrict
discussion to the lengths of the two-sided 90% confidence
intervals. Over all the simulations presented in Table 1, the
Breeze and proposed intervals are 3.3% and 4.9% wider on
average than the logit-transform intervals.

Table 2 presents simulation results for the same setup as
Table 1 except that the sample weights were taken to be
informative. This was done by setting the sample weight to
be 10 with probability 2/3 if the event was positive and with
probability 1/3 if the event was not positive, otherwise the
weightwas setto 1. The probability that an event was positive
in each cluster was adjusted downwards so that the overall
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weighted proportions were the same as in Table 1. The
results in Table 2 look similar to those in Table 1 except the
linear and logit intervals tend to have worse coverage
probabilities.

Table 3 presents simulation results for the same setup as
Table 1 except the analysis is unweighted. The results are
very similar to the Table 1 results. Since the top third of
Table 3 corresponds to no intracluster correlation, one
could also use the simple-random-sampling binomial limits
there. Averaging over the four situations in this third of the
table, the proposed limits are 2.5% wider that the binomial
limits (results not shown). As the true design effect is 1.0
in the top third of Table 3, these simulations can be used to
examine the effect of truncation of nd} in the proposed
procedure. (Truncation is uncommon in the simulations in
Table 1, since the true design effects there are all >1.)
Simulation using the proposed procedure with truncation
lead to wider more conservative intervals than for the
proposed intervals in the top third of Table 3. Averaging
over the four situations considered, the proposed limits with
truncation are 4.0% wider than the proposed limits (results
not shown for truncated limits).

Table 4 presents simulation results for the same setup as
Table 1 except 10 rather than 100 observations are
simulated within each cluster. The results are very similar
to Table 1 when one compares simulations with the same
expected number of positive events. The one exception is
the increased conservativeness of the Breeze intervals as
compared to the proposed method. This is because the
overall proportions are higher in Table 4 than Table 1 for a
given expected number of positive events (since the sample
size is smaller in Table 4). The Poisson intervals of Breeze
do not work well with proportions that are not small. For
example, we performed a simulation corresponding to the
top third of Table 1 except that the overall proportion p = .5
with 1600 expected number of positive events. The
simulated lower and upper lack-of-coverage percentages for
the Breeze bounds were 1.2% and 1.3%, compared to 4.6%
and 4.7% for the proposed method. The Breeze intervals
were on average 37% wider than the proposed intervals.

The Breeze intervals also do not work well when the
number of clusters is very small, since they do not account
for degrees of freedom of the variance estimation. For
example, we performed a simulation corresponding to the
top third of Table 1 except that data from only 8 clusters
were simulated (with 100 observations per cluster), and
p; = .1 so that the expected number of positive events was
80. The simulated lower and upper lack-of-coverage
percentages for the Breeze bounds were 6.1% and 5.4%,
compared to 4.7% and 4.0% for the proposed method.

Table 5 presents simulation results for the same setup as
Table 1 except the cluster sizes were taken to be 10 or 100
with probability 1/2. The lack-of-coverage probabilities are
larger than the nominal 5% in the bottom third of the table
for all the methods. The logit intervals also do not behave
as well as in Table 1 for the top two-thirds of the table.
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An additional set of simulations was done in which two
clusters (each of sample size 50) were simulated from each
32 strata. The expected numbers of positive event were
taken as in Table 1, the weights were randomly set to 1 or
10, and the probability of a positive event was taken to be
different in the different strata to simulate an intracluster
correlation. The results (not shown) were very similar to
the results given in Table 1.

4. APPLICATIONS

In this section we consider two applications in which the
numbers of positive counts are small. In the first applica-
tion, involving estimating HIV positivity in an unselected
population, the numbers of positive counts are small
because the rates of HIV infection are small. In the second
application, involving estimating whether individuals have
ever used cocaine, the rates are not small but the numbers
of positive counts are small because we restrict the analyses
to relatively small subdomains. For both applications,
SUDAAN (Shah, Barnwell and Bieler 1995) was used to
calculate the (design-based) standard errors of the
proportions, and the function “FINV” in SAS (1990,
p. 547) was used to calculate the quantiles of the F
distribution in (1.2).

4.1 Seroprevalence of HIV Estimated From the
Third National Health and Nutrition
Examination Survey (NHANES III)

NHANES III was a survey conducted in 1988-1994 of
the civilian noninstitutionalized population ages 2 months
or older of the United States (National Center for Health
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Statistics 1994). An HIV test was performed on partici-
pating individuals 18 years of age or older. McQuillan,
Khare, Karon, Schable and Vlahov (1997) studied the
seroprevalence of HIV for individuals under the age of 60
years and various subgroups, some of which are displayed
in Table 6. Of the 11,202 individuals tested, 59 were
infected. The estimated prevalence in Table 6, 0.32%, is far
from the unweighted proportion, 0.53% = 59/11202,
because the estimated prevalence is a weighted proportion
utilizing the sample weights. Because the testing for HIV
was anonymous, for these analyses the sample weights were
derived from the original NHANES III sample weights of
all individuals in the same stand (survey location),
race/ethnicity group, sex, and age group (18-39 vs. 40-59)
of the tested individual (M. Khare, personal communica-
tion). The pseudo-design for variance estimation was the
sampling of 2 pseudo-PSU’s from each of 23 strata (M.
Khare, personal communication), which is not the pseudo-
design typically used for NHANES III variance estimation.

The linear 90% confidence intervals for prevalence for
the various groups in Table 6 are shifted to the left and
shorter than the other intervals, which are similar to each
other. The proposed intervals are very slightly wider than
the Breeze or logit intervals. The effective sample sizes
calculated in (2.1) are markedly smaller than the sample
sizes because of the design effects of the survey; the
confidence intervals based on the truncated procedures will
therefore be identical to the ones given in Table 6. The
differences between n ™ and nd} are relatively minor. For
this relatively rare outcome, the simulations given in section
3 suggest that the Breeze and proposed confidence intervals
may maintain their nominal 90% coverage probabilities
better than the other intervals.

Table 6
Seroprevalence of HIV Among Adults Aged 18-59 Years Based on the Third National Health and
Nutrition Examination Survey

Total Sex Race/ethnicity
Male Female White Black Mex. - Amer.

Sample size 11202 5142 6060 4128 3579 3495
Number infected 59 44 9 38 12
Prevalence (%) + SE 0.320+0.076  0.519+0.130  0.127 £0.053 0.203 +£0.071 1.100 £ 0.247 0.368 £0.134
Effective sample size

n* 5588 3056 4433 3976 1779 2039

nd} 5148 2816 4084 3664 1640 1880
Linear 90% con. int. (0.19, 0.45) (0.30,0.74) (0.04, 0.22) (0.08, 0.33) (0.68, 1.52) (0.14, 0.60)
Logit 90% con. int. (0.21, 0.48) (0.34,0.80) (0.06, 0.26) (0.11,0.37) (0.75, 1.62) (0.20, 0.69)
Breeze 90% con. int. (0.21,0.48) (0.32,0.79) (0.05, 0.26) (0.10,0.37) (0.73, 1.61) (0.18, 0.68)
Proposed 90% con. int. (0.20, 0.48) (0.32, 0.80) (0.05, 0.26) (0.10,0.37) (0.71, 1.63) (0.17, 0.69)
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Table 7
“Ever Users” of Cocaine Among Adults Ages 12-44 Years Based on Individuals with 16 or More Years of Education
Sampled in Hispanic Health and Nutrition Examination Survey
Total Sex
Male Female
Sample size 123 69 54
Ever-users 13 10
Proportion (%) + SE 11.6 £2.5 143+34 7.0+4.8
Effective sample size
n* 167.1 105.0 28.2
ny 132.8 84.4 229
Linear 90% confidence int. (7.0, 16.2) (8.0,20.7) (-1.94,15.9)
Logit 90% confidence int. (7.8,17.1) 9.1,21.9) (1.9,22.8)
Breeze 90% confidence int. (1.7,17.0) (8.3,23.2) (0.9, 24.8)
Proposed 90% confidence int. (7.4,17.2) (8.5,22.1) 0.9,22.7)
Truncated Procedures

Linear 90% confidence int. (6.3,17.0) (6.5,22.2) same as above
Logit 90% confidence int. (7.2,18.2) (8.1,24.1) “
Breeze 90% confidence int. (7.1,18.1) (7.7, 24.4) “
Proposed 90% confidence int. (7.2,17.5) (8.0,23.2) “

(a) In practice, this interval would be presented as (0, 15.9) since negative proportions are impossible.

4.2 Use of Cocaine Among College-educated
Individuals Sampled in the Hispanic Health and
Nutrition Examination Survey (HHANES)

HHANES was a survey conducted in 1982-1983 of three
Hispanic groups living in the United States (National
Center for Health Statistics 1985). We restrict attention
here to the Mexican-American sample. Individuals ages
12-44 years were asked “About how old were you the first
time you tried cocaine?”. The possible answers were the
age of the individual (in years) when he first tried cocaine,
a “never used” category, and a “don’t know” category. We
consider estimating the proportion of “ever-users” among
individuals who completed 16 or more years of education
(for which there were no “don’t know” responses).

There were 13 ever-users among 123 sampled indivi-
duals, with the sample-weighted proportion being 11.6%
(Table 7). The design-based standard error, 2.5%, is
estimated with only 8 degrees of freedom since the
sampling design of HHANES can be approximated by the
sampling of 2 PSU’s from each of 8 strata (Kovar and
Johnson 1986).  The effective sample sizes are
n*=167.1 and n, = 132.8, which are both greater than
the sample size. This is because the estimated design effect
is 736, so that n* = 123/.736 = 167.1. (The second factor
in (2.2) is 0.794.) Despite the stratification, we think that
the true design effect is greater than 1 for this survey
because of the clustering and the sample weighting. (The
estimated design effect is estimated poorly because of the
limited degrees of freedom.) We therefore think that the
truncated procedures are reasonable for this application.

Because of the limited degrees of freedom, and because
the outcome is not rare, there are more differences between
the logit, Breeze and proposed confidence intervals
displayed in Table 7. Based on the simulations given in
section 3, we recommend the proposed (truncated)
confidence intervals.

Our approach may appear slightly inconsistent for this
survey in that we accept poorly-estimated effective sample
sizes less than the sample size but truncate those greater.
We believe that this is a reasonable conservative approach
to use when it is thought that the true design effect is
probably greater than 1.

5. DISCUSSION

Although the confidence intervals proposed here had
adequate coverage probability for almost all the simulations
performed, this is not guaranteed for all possible config-
urations of the population, e.g., see the bottom third of
Table 5. An example with a more serious lack of coverage
can also easily be constructed: Suppose that the population
consists of clusters of size 100, and that 10% of the clusters
have all positive units and the remaining 90% have all zero
units. If we sample 10 clusters as a simple random sample,
and subsample all the units in the sampled clusters, then
35% (= (1-.1)"°) of the time we will observe no positive
units in the sample size of 1000. In this situation, our
proposed intervals reduce to the usual binomial ones, so
that, e.g., the upper 95% confidence limit for the population
proportion is given by .003 ( = 1-.05"'%®). This implies that
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the upper 95% confidence interval is less that the true value
of .10 at least 35% of the time, a serious undercoverage.

It is possible in simple sampling situations to construct
confidence intervals that are guaranteed to have at least
their nominal coverage probability by considering all
possible configurations of the population, and using a least-
favorable configuration for the coverage probability. For
the hypothetical single-stage cluster sample mentioned
above, for example, an upper 95% confidence limit could
be given by the binomial limit based on 0 positive units out
of 10, i.e., .26 (=1-.05"1%). Such confidence intervals, which
can become computationally intensive to calculate, have
been studied by Gross and Frankel (1991), who also suggest
some less computationally intensive approximations.

The advantages of our proposed intervals over such
approaches are (1) they are easy to calculate, (2) they
accommodate any complex sampling design, including
nonresponse and postsratification adjustments to the sample
weights, (3) they will generally maintain their nominal
coverage probability, (4) they will be less conservative than
intervals that are guaranteed to maintain their nominal
coverage probability for all population configurations, and
(5) they have better properties than the linear intervals,
logit-transform or Breeze intervals. Conclusions (2) and (5)
are based on our simulation results, which of course do not
cover all possible situations. More research would be
useful in this regard.
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