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Poststratification Into Many Categories Using Hierarchical
Logistic Regression

ANDREW GELMAN and THOMAS C. LITTLE'

ABSTRACT

A standard method for correcting for unequal sampling probabilities and nonresponse in sample surveys is poststratification:
that is, dividing the population into several categories, estimating the distribution of responses in each category, and then
counting each category in proportion to its size in the population. We consider poststratification as a general framework
that includes many weighting schemes used in survey analysis (see Little 1993). We construct a hierarchical logistic
regression model for the mean of a binary response variable conditional on poststratification cells. The hierarchical model
allows us to fit many more cells than is possible using classical methods, and thus to include much more population-level
information, while at the same time including all the information used in standard survey sampling inferences. We are thus
combining the modeling approach often used in small-area estimation with the population information used in
poststratification. We apply the method to a set of U.S. pre-election polls, poststratified by state as well as the usual
demographic variables. We evaluate the models graphically by comparing to state-level election outcomes.

KEY WORDS: Bayesian inference; Election forecasting; Nonresponse; Opinion polls; Sample surveys.

1. INTRODUCTION

It is standard practice for weighting in opinion polls to be
based entirely or primarily on poststratification, which we
use generally to refer to any estimation scheme that adjusts
to population totals. The basic approach is to divide the
population into a number of categories, within each of
which the survey is analyzed as simple random sampling.
The poststratification step is to estimate population quan-
tities by averaging estimates in the categories, counting
each category in proportion to its size in the population.
Poststratification categories are typically based on demo-
graphic characteristics (sex, age, efc.) as well as any varia-
bles used in stratification. Another level of complication,
which we do not address here, would occur under cluster
sampling.

There is a fundamental difficulty in setting up post-
stratification categories. It is desirable to divide the
population into many small categories in order for the
assumption of simple random sampling within categories to
be reasonable. But if the number of respondents per
category is small, it is difficult to accurately estimate the
average response within each category. For example, if we
poststratify by sex, ethnicity, age, education, and region of
the U.S., some cells may be empty in the sample, whereas
others may have only one or two respondents.

A general solution to this problem is to model the
responses conditional on the poststratification variables (see
Little 1993). For example, the standard approach to
adjusting for several demographic variables is to rake
across one-way or two-way margins (i.e., iterative
proportional fitting, Deming and Stephan 1940), which
essentially corresponds to poststratification on the complete
multi-way table, but with a model of the responses,

conditional on the demographic variables, that sets
higher-level interactions to zero. Methods based on
smoothing weights can also be viewed as poststratification,
with corresponding models on the responses (see Little
1991). When the poststratification categories follow a
hierarchical structure (for example, persons within states in
the U.S.), one can improve efficiency of estimation by
fitting a hierarchical model (e.g., Lazzeroni and Little
1997). In the related context of regression estimation,
Longford (1996) demonstrates the potential for hierarchical
linear models to improve the precision of small area
estimates based on sample survey data.

In this paper, we set up a hierarchical logistic regression
model to be used for poststratification estimates for a binary
variable. The advantage of the model, compared to standard
poststratification, is that it allows for the use of many more
categories, and thus much more detailed population
information. The practical gains from this method are
greatest for small subgroups of the population. We apply
the method to the state-level results of a set of U.S.
pre-election polls. This example has the nice feature that
we can check our inferences externally by comparing to
state-level election outcomes. Details appear in an
appendix for computing the hierarchical model using an
approximate EM algorithm.

2. MODEL

2.1 Sampling and Poststratification Information

Consider a partition of the population into R categorical
variables, where the r—th variable has J, levels, for a total
of J =TI% | J, categories (cells), which we label j = 1, ..., J.
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Assume that N, the number of vnits in the population in
category j, is known for all j. Let y be a binary response of
interest; label the population mean response in each cate-
gory j as m;. Then the overall population mean is
Y=Y Nm/} N, Assume that the population is large
enougljl that we can ignore all finite-population corrections.

A sample survey is now conducted in order to estimate ¥
(and perhaps some other combinations of the nj’s). For
each j, let », be the number of units in category j in the
sample. Conditional on the R explanatory variables, assume
that nonresponse is ignorable (Rubin 1976). Thus, the R
variables should include all information used to construct
survey weights, as well as any other variables that might be
informative about y.

For the example we shall consider in Section 3, we
categorize the population of adults in the 48 contiguous
U.S. states by R =5 variables: state of residence, sex,
ethnicity, age, and education, with (J,...,Jy) =
(48,2,2,4,4). (Ethnicity, age, and education are discre-
tized into 4 categories each, as described in Section 3.1.)
The J=3,072 categories range from “Alabama, male,
black, 18-29, not high school graduate” to “Wyoming,
female, nonblack, 65+, college graduate,” and, from the
U.S. Census, we have good estimates of &, in each of these
categories. We shall consider population estimates
(summing over all 3,072 categories) and also estimates
within individual states (separately summing over the
64 categories for each state). It is impossible for a
reasonably-sized sample survey to allow independent
estimates of the mean responses =, for each category j (in
fact, the vast majority of categories will be empty or contain
just one respondent), and so it is necessary to model the
7.’s in order to poststratify and thus make use of the known

J . .
category sizes N,. The (potential) advantage of post-
stratification is to correct for differential nonresponse rates
among the categories.

2.2 Regression Modelling in the Context of
Poststratification

One can set up a logistic regression model for the
probability T of a “yes” for respondents in category j:

logit(m;) = X, B, 1

where X is a matrix of indicator variables, and X, is the
j-th row of X. If we were to assume a uniform prior
distribution on B, then Bayesian inference, for different
choices of X, under this model corresponds closely to
various classical weighting schemes. These correspon-
dences, which we present below, are general and rely on the
linearity of the assumed model (that is, XjB in (1)). (In the
case of binary data, which we are considering in this paper,
the classical and uniform-prior-Bayesian estimates are not
identical, because of the nonlinear logistic transformation
in (1), but for large samples the differences are minor.)

The following models correspond to the most commonly
used classical poststratification estimates.
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— Setting X to the JxJ identity matrix corresponds to
weighting each unit in cell j by Nj/n.; that is, simple
poststratification. This method is well known to work
well only if the ».’s are reasonably large (and it will not

. J .
work at all if n, = 0 foranyj).

— If we set X to the J x (Y®,J) matrix of indicators for
each individual variable, then the estimate of ¥ corres-
ponds approximately to that obtained by raking across all
R one-way margins.

— Including various interactions in X corresponds to
including these same interactions in the raking. To put it
most generally, assuming “structure” of any kind in X
corresponds to pooling the poststratification across cells
in some way.

— Including no explanatory variables in the model (that is
letting X be simply a vector of 1°s) leads to the sample
mean estimate y.

See Holt and Smith (1979) and Little (1993) for more

discussion of the relation between weighting estimates and

poststratification.

2.3 Hierarchical Regression Modelling for Partial
Pooling

When the number of cells is large, none of the above
options makes efficient use of the information provided by
the categories (for example, simple poststratification gives
estimates that are too variable, but if we exclude explana-
tory variables with many categories, we are discarding
important information). Instead, we allow partial pooling
across cells by setting up a mixed-effects model (see, e.g.,
Clayton 1996). We write the vector B as (a, Y, ... Y, ),
where a is a subvector of unpooled coefficients and each
Y,, for [ =1, ..., L, is a subvector of coefficients (y,) to
which we fit a hierarchical model:

ind

Yy ~ NO, ), k=1,... K,

Setting 7, to zero corresponds to excluding a set of
variables; setting T, to « corresponds to a noninformative
prior distribution on the y,, parameters.

Given the responses y, in categories j, we construct an
nx.J categorization matrix C, for which C,.j =1 if
respondent 7 is in cell j. Let Z = CX. The model (1) then can
be written in the standard form of a hierarchical logistic
regression model as

y; ~ Bemoulli(p))
logit(p,) = ZB
B~ NO,Y,),
where } 5 Yisa diagonal matrix with O for each element of «,
followed by T, ? for each element of Y, foreach /. We use
the notation p,, for the probability corresponding to the unit

i, as distinguished from T, the aggregate probability
corresponding to the categoryj. See Nordberg (1989) and
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Belin, Diffendal, Mack, Rubin, Schafer and Zaslavsky
(1993) for general discussions of hierarchical logistic
regression models for survey data.

2.4 Inference Under the Model

To perform inferences about population quantities, we
use the following empirical Bayes strategy: first, estimate
the hyperparameters T, given the data y; second, perform
Bayesian inference for the regression coefficients B, given
y and the estimated t,’s; third, compute inferences for the
vector of cell means = =logit™" (XB); fourth, compute
inferences for population quantities by summing N;m;’s
We view this approach as an approximation to the full
Bayesian analysis, which averages over the parameters t,.
The two approaches will differ the most when components T,
are imprecisely estimated or are indistinguishable from O
(see for example, Gelman, Carlin, Stern and Rubin (1995),
Section 5.5). In the example we consider here, this is not a
problem because the various components are clearly esti-
mated to be different from 0. If this were not the case, it
would probably be worth putting in the additional
programming effort for a full Bayes analysis. The focus of
this paper, however, is on the effectiveness of combining
hierarchical modeling with poststratification, not on the
relatively minor technical differences between Bayes and
empirical Bayes analyses.

The shrinkage of the cell estimates comes in the second
step, and the amount of shrinkage depends both on the
sample sizes n, and the data y .. More shrinkage occurs for
smaller values of #, and for values of y, far from the
predictions based on the logistic regression model. In
addition, more shrinkage occurs if the parameters 1, are
small. A batch of coefficients vy, with little predictive
power will be shrunk toward zero in the estimation, because
7, will be estimated to have a small value. This is how we
can include a large number of coefficients in the hierar-
chical model without the estimates of population quantities
becoming too variable.

3. APPLICATION: BREAKING DOWN
NATIONAL SURVEYS BY STATE

3.1 Survey Data

We apply the above methodology to state-by-state results
from seven national opinion polls of registered voters
conducted by the CBS television network during the two
weeks immediately preceding the 1988 U.S. Presidential
election. To follow our general notation, we assign y, = 1
to supporters of Bush and y, = 0 to supporters of Dukakis;
we discard the respondents who expressed no opinion
(about 15% of the total; we follow standard practice and
count respondents who “lean” toward one of the candidates
as full supporters). Since no data were collected from
Hawaii and Alaska, only the 48 contiguous states are
included in the model. Washington, D.C., although
included in the surveys, was excluded from this analysis

129

because its voting preferences are so different from the
other states that a generalized linear model that fit the 48
states would not fit D.C. well, and as a result, the data from
D.C. would unduly influence the results for the states. Since
there are few observations for the smaller states and the
between-poll variation in the estimated support for Bush i 1s
within binomial sampling variability (as measured by a $?
test of equality of the proportions of support for Bush in the
seven polls), we combine the data from all the polls.

CBS creates survey weights by raking on the following
variables, with default classifications for item nonresponse
shown in brackets:

Census region: Northeast, South, North Central, West

sex: male, female

ethnicity: black, [white/other]

age: 18-29, 30-44, [45-64], 65+

education: not high school grad, [high school grad],

some college, college grad.

The raking includes all main effects plus the interactions
of sex x ethnicity and age x education. We include all
these variables as fixed effects in our logistic regression
model, excluding from our analysis the relatively few
respondents with nonresponse in any of the demographic
variables. The CBS weights also correct for number of
telephone lines and number of adults in household, which
affect sampling probabilities; these have minor effects on
estimates for Presidential preference (see Little 1996,
chapter 3), and we do not include them in our model.
Further details of the CBS survey methodology and
adjustment appear in Voss, Gelman, and King (1995).

Our model goes beyond the CBS analysis by including
indicators for the 48 states as random effects, clustered into
four batches corresponding to the four census regions. We
check the performance of the model by comparing estimates
for each state to the observed Presidential election.
(Opinion polls just before the election are reliable indicators
of the actual election outcome; see, e.g., Gelman and King
1993.) We also compare the stability of estimates based on
different polls over a short period of time.

3.2 Population Data for Poststratification

In order to poststratify on all the variables listed above,
along with state, we need the joint population distribution
of the demographic variables within each state: that is,
population totals N, for each of the 2 x 2 x 4 x 48 cells of
sex x ethnicity X age x state. Since the target population
is registered voters, we should use the population distri-
bution of registered voters. As an approximation to that
distribution we use the crosstabulations available in the
Public Use Micro Survey (PUMS) data for all citizens of
age 18 and over. The PUMS data contain records for 5% of
the housing units in the U.S. and the persons in them,
including over 12 million persons and over 5 million
housing units. These data are a stratified sample of the
approximately 15.9% of housing units that received
long-form questionnaires in the 1990 Census. Persons in
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institutions and other group quarters are also included in the
sample. Weights are given for both the housing unit and
persons within the unit based on sampling probabilities and
adjustment to Census totals for variables included in the
short-form questionnaire. We use the weighted PUMS data
to estimate ]V; for each poststratification category and
ignore sampling error in these numbers. The weighted
PUMS numbers are very similar to the poststratification
numbers used by CBS in their raking (see Little 1996,
chapter 3).

3.3 Results

We present results for four methods applied to the
combined data from the seven surveys:

1. Classical estimate based on raking by demographic
variables (region, sex, ethnicity, age, education, sex X
ethnicity, and age x education). This is very close to the
weighting method used by CBS. For estimates of results
by states, we perform weighted averages within each
state, using the weights obtained by the raking.

2. Regression estimate using the demographic variables
and also indicators for the states, with no hierarchical
model (i.e., “fixed-effects” regression). This is very
similar to using iterative proportional fitting to rake on
states as well as demographics. The state-by-state
estimates from this model should improve upon those
obtained by raking on demographics because the
estimates of m;’s are weighted by the population
numbers N, rather than the sample numbers n; within
each state.

3. Regression estimate using only the demographic
variables, with the state effects set to zero. This model
allows the average responses within states to differ only
because of demographic variation; to the extent that the
demographics do not explain all the variation in opinion,
the model should underestimate the variability between
states.

4. Regression estimate using the demographic variables,
with the 48 state effects estimated with a hierarchical
model (in the notation of Section 2, L =4 and K|, K,
K, K, =12,13,12,11). We expect this model to
perform best, both because of the flexibility of the
hierarchical regression model and because the post-
stratification uses the population numbers N;.

We fit each of the regression models to the survey data,
obtain posterior simulation draws for each coefficient
(conditional on the estimated 7, T,, 75, T,), and reweight
based on the PUMS data to obtain poststratified estimates
for the proportion of registered voters in each state who
support Bush for President.

Table 1 presents the raking estimate and the posterior
medians and interquartile ranges for the three models, along
with data on the survey responses and the actual election
outcome. Table 2 gives the nationwide and mean absolute
statewide prediction errors for the raking and the three
models. The four methods give almost identical results at
the national level; the real gain from the model-based
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estimates occurs in estimating the individual states. The
reduction in mean absolute prediction error from about 6%
to 5% can be attributed to using the poststratification
information, with the further reduction to 3.5% attributable
to the hierarchical modeling. In addition, the last two lines
of Table 2 show that the uncertainty estimates from the
hierarchical model are short and relatively well calibrated
(slightly less than half of the true values fall inside the 50%
intervals, which is reasonable since these intervals account
only for sampling error and not for nonsampling errors and
changes in opinion).

Figure 1 plots, by state, the actual election outcomes vs.
the raking estimates and the posterior medians for the three
models. As one would expect, the hierarchical model
reduces variance, and thus estimation error, by shrinkage.
Although the four methods correct the bias of the nation-
wide estimate by about the same amount, they act differently
on the individual states, with the hierarchical model
performing best. Figure 2 compares the prediction errors for
the hierarchical and raking estimates for the states.

Interestingly, the hierarchical model does not seem to
shrink the data enough to the nationwide mean: we can tell
this because, in Figure 1d, the actual election outcome is
higher than predicted for low-predicted values, and lower
than predicted for high-predicted values. Undershrinkage
means that the estimated parameters %, are probably higher
than their true values, which could be caused by a pattern of
nonignorable nonresponse that varies between states so that
observed variability in the state proportions is caused by
varying nonresponse patterns as well as actual variation in
average opinions (see Little and Gelman 1996, for a
discussion of this example and Krieger and Pfeffermann
1992, for a more general treatment). The undershrinkage
could be quantified by comparing the estimated to the
optimal level of shrinkage, but this comparison can only be
made after the true values are observed.

It is also possible to compare the models by fitting each
separately to each survey and examining the stability of
estimates over a short period of time. This would be a more
reasonable way to study the models in the common situation
that the true population means never become known.
Figure 3 displays, for each of our seven surveys, the
estimates from raking and from the hierarchical model.
(When modeling the surveys individually, we fit a common
hierarchical variance for all 48 states because there was not
enough data to obtain reliable maximum likelihood
estimates for the four regions separately from the data in
each poll.) Results are shown for the entire United States
and for three representative states: California (a large state),
Washington (mid-sized), and Nevada (small). For
convenience, the plot also show the estimates based on the
seven surveys pooled and the actual election outcomes. For
all the individual states, the hierarchical estimate is less
variable over time than the raking estimate. The pattern is
clearest in Nevada, where the sample size for the individual
surveys was so low that the raking estimate degenerated to
0 or 1 in most cases, but the better performance of the
hierarchical model is clear in the other states as well. For
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Table 1
By state: election results (proportion of the two-party vote in 1988 received by Bush); survey data (unweighted mean and sample size) from
the combined surveys; raking estimate using CBS variables; and posterior median (and interquartile range; that is, width of the central 50%
uncertainty interval) of poststratified estimates based on state effects unsmoothed, set to zero, and fit by a hierarchical model.
Estimates are labelled 1, 2, 3, 4 corresponding to the descriptions in Section 3.3.

Poststratification estimates (and IQRs)

State Election result Sample size Unweighted 1: Raking 2: State effects  3: State effects 4: Hierarchical
mean estimate unsmoothed setto 0 model
AL 0.60 134 0.72 0.67 0.63 (0.05) 0.56 (0.01) 0.62 (0.05)
AR 0.57 86 0.57 0.53 0.53 (0.06) 0.60 (0.01) 0.55 (0.06)
AZ 0.61 141 0.62 0.61 0.62 (0.05) 0.56 (0.02) 0.61 (0.05)
CA 0.52 1075 0.57 0.53 0.55(0.02) 0.53 (0.01) 0.55 (0.02)
CcO 0.54 126 0.59 0.59 0.58 (0.06) 0.57 (0.01) 0.57 (0.05)
CT 0.53 103 0.53 0.55 0.52 (0.06) 0.49 (0.02) 0.51 (0.06)
DE 0.56 30 0.40 0.37 0.42(0.11) 0.60 (0.01) 0.52 (0.08)
FL 0.61 553 0.64 0.62 0.61 (0.03) 0.62 (0.01) 0.61 (0.03)
GA 0.60 211 0.62 0.58 0.56 (0.04) 0.56 (0.01) 0.56 (0.04)
1A 0.45 102 0.38 0.38 0.38 (0.06) 0.59 (0.01) 0.41 (0.06)
D 0.63 31 0.52 0.58 0.52 (0.12) 0.59 (0.02) 0.55 (0.08)
IL 0.51 429 0.55 0.52 0.53 (0.03) 0.52 (0.01) 0.52 (0.03)
IN 0.60 215 0.75 0.73 0.74 (0.04) 0.56 (0.01) 0.72 (0.04)
KS 0.57 105 0.72 0.71 0.71 (0.06) 0.57 (0.01) 0.68 (0.05)
KY 0.56 146 0.57 0.53 0.56 (0.05) 0.64 (0.01) 0.57 (0.05)
LA 0.55 153 0.62 0.60 0.61 (0.05) 0.54 (0.01) 0.59 (0.04)
MA 0.46 277 0.47 0.41 0.46 (0.04) 0.50 (0.02) 0.47 (0.04)
MD 0.51 207 0.52 0.50 0.49 (0.04) 0.56 (0.01) 0.50 (0.04)
ME 0.56 44 0.52 0.52 0.55(0.10) 0.52 (0.02) 0.54 (0.08)
MI 0.54 399 0.58 0.55 0.57 (0.03) 0.54 (0.01) 0.57 (0.03)
MN 0.46 210 0.54 0.53 0.53 (0.05) 0.59 (0.01) 0.53 (0.04)
MO 0.52 235 0.46 0.43 0.46 (0.04) 0.55(0.01) 0.47 (0.04)
MS 0.61 170 0.69 0.70 0.65 (0.04) 0.53(0.01) 0.63 (0.04)
MT 0.53 31 0.39 0.40 0.40 (0.12) 0.58 (0.02) 0.50 (0.09)
NC 0.58 239 0.59 0.60 0.55 (0.04) 0.58 (0.01) 0.55 (0.04)
ND 0.57 54 0.56 0.56 0.55 (0.09) 0.58 (0.01) 0.56 (0.08)
NE 0.61 90 0.58 0.60 0.56 (0.07) 0.58 (0.01) 0.56 (0.06)
NH 0.63 20 0.70 0.68 0.73 (0.13) 0.53 (0.02) 0.61 (0.10)
NJ 0.57 301 0.57 0.60 0.53 (0.04) 0.46 (0.01) 0.53 (0.03)
NM 0.53 87 0.55 0.54 0.57 (0.07) 0.54 (0.02) 0.56 (0.06)
NV 0.61 19 0.68 0.80 0.67 (0.13) 0.56 (0.02) 0.60 (0.09)
NY 0.48 639 0.42 0.37 0.41 (0.03) 0.45 (0.01) 0.41 (0.02)
OH 0.55 454 0.62 0.63 0.58 (0.03) 0.55(0.01) 0.58 (0.03)
OK 0.58 93 0.57 0.62 0.59 (0.07) 0.63 (0.01) 0.60 (0.06)
OR 0.48 111 0.50 0.47 0.50 (0.06) 0.58 (0.02) 0.52 (0.06)
PA 0.51 431 0.54 0.54 0.52 (0.03) 0.48 (0.02) 0.52 (0.03)
RI 0.44 65 0.28 0.29 0.27 (0.07) 0.50 (0.02) 0.34 (0.06)
SC 0.62 151 0.70 0.67 0.66 (0.05) 0.55 (0.01) 0.64 (0.04)
SD 0.53 52 0.54 0.51 0.53 (0.09) 0.58 (0.01) 0.54 (0.08)
TN 0.58 252 0.68 0.69 0.66 (0.04) 0.60 (0.01) 0.65 (0.03)
X 0.56 594 0.58 0.52 0.56 (0.03) 0.60 (0.01) 0.56 (0.02)
uT 0.67 61 0.80 0.85 0.79 (0.07) 0.60 (0.02) 0.72 (0.06)
VA 0.60 255 0.69 0.72 0.67 (0.04) 0.59 (0.01) 0.66 (0.03)
VT 0.52 12 0.54 0.58 0.60 (0.19) 0.53 (0.02) 0.55 (0.11)
WA 0.49 269 0.47 0.41 0.46 (0.04) 0.58 (0.01) 0.48 (0.04)
Wi 0.48 264 0.49 0.53 0.48 (0.04) 0.57 (0.01) 0.49 (0.04)
wv 0.48 79 0.48 0.52 0.48 (0.07) 0.65 (0.01) 0.53 (0.06)
wY 0.61 13 0.50 0.36 0.59 (0.17) 0.59 (0.02) 0.59 (0.10)
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Table 2
Summary statistics for raw mean of responses, raking estimate, and three poststratified estimates from the combined surveys. Summaries
given are the estimated mean of the 48 state vote proportions weighted by state voter turnout (thus, estimated national popular vote
proportion for Bush excluding Alaska, Hawaii, and the District of Columbia); the mean absolute error of the 48 state estimates; the average
width of the 50% intervals for the states; and the number of the 48 states whose true values fall within the 50% intervals.

Summ Actual result Unweighted Raking State effects State effects Hierarchical
ary mean estimate unsmoothed setto 0 model
Mean of national popular vote 0.539 0.568 0.549 0.548 0.547 0.550
Mean absolute error of states - 0.056 0.066 0.049 0.048 0.035
Average width of 50% intervals - - - (0.069) (0.016) (0.057)
Number of states contained in 50% interval - - - 18 3 20
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Figure 1. Election result by state vs. posterior median estimate for (a) raking on demographics, (b) regression model
including state indicators with no hierarchical model, (c) regression model setting state effects to zero,

(d) regression model with hierarchical model for state effects.

example, it was not reasonable to assign Bush only 46% of
the support in California (in the poll 3 days before the
election) or only 30% of the support in the state of
Washington. For the United States as a whole, however,
the two estimates are quite similar (in fact, when all seven
polls are combined, the raking estimate performs very
slightly better), indicating once again that the benefits from
the modelling approach appear when studying subsets of
the population.

The results for Washington have the surprising property
that the regression estimate based on the combined surveys
(shown at time ““ -1 on the graph) is lower than the seven
estimates from the original surveys. This occurs because
the data from the combined surveys show that the state of
Washington supports Bush less than would be predicted
merely by controlling for the demographic covariates (that
prediction would be the estimate for Washington from the
model with state effects set to zero, which from Table 1 is
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Figure 2. Scatterplot of prediction errors by state for
the hierarchical model vs. the raking
estimate. The errors of the hierarchical

model are lower for most states.
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Estimated Bush support estimated separately from seven individual polls taken shortly before the election for (a) the entire U.S.

(excluding Alaska, Hawaii, and the District of Columbia), (b) a large state (California), (¢) a medium-sized state (Washington), and
(d) a small state (Nevada). Each plot shows the raking estimates as a dotted line and the estimates from hierarchical model as a solid
line, with error bars indicating 50% confidence bounds for the raking and 50% posterior intervals for the model-based estimates.
The polls were taken between nine and two days before the election. Estimates based on the combined surveys are shown at time
“_17, and the actual election result is shown at time “0” on each plot.

0.58). But none of the individual surveys, taken alone, had
enough data to make a convincing case that Washington
was so far from the national mean, and so the Bayes
estimate shrunk their estimates to a greater extent. This
behavior, while it may seems strange at first, is in fact
appropriate: with a smaller survey, there is less information
about the individual poststratification categories, and the
model-based estimate produces an estimate for each
category that is closer to the sample mean. When all seven
surveys are combined, more information is available, and
the model relies more strongly on the data in each category.
This is how the Bayes procedure essentially balances the
concemns of poststratifying on too few or too many
categories.

4. DISCUSSION

Poststratification is the standard method of correcting for
unequal probabilities of selection and for nonresponse in
sample surveys. From the modelling perspective, raking or
poststratification on a set of covariates is closely related to

a regression model of responses conditional on those co-
variates, with population quantities estimated by summing
over the known distribution of covariates in the population.
Conditioning on more fully-observed covariates allows one
to include more information in forming population
estimates, but it is well known that raking on too large a set
of covariates yields unacceptably variable inferences. We
propose a method of poststratification on a large set of
variables while fitting the resulting regression with a
hierarchical model, thus hamessing the well-known
strengths of Bayesian inference for models with large
numbers of exchangeable parameters.

The Bayesian poststratification is most useful for
estimation in subsets of the population (e.g., individual
states in the U.S. polls) for which sample sizes are small.
A related area in which modeling should be effective is in
combining surveys conducted by different organizations,
modeling conditional on all variables that might affect
nonresponse in either survey. In addition, the methods in
this paper can obviously be applied to continuous responses
by replacing logistic regressions by other generalized linear
models.
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Our purpose in Bayesian modeling is not to fit a
subjectively “true” model to the data or the underlying
responses, but rather to estimate with reasonable accuracy
the average response conditional on a large set of
fully-observed covariates. More accurate models of the
responses should allow more accurate inferences — but even
the simple exchangeable mixed effects model we have fit,
with hyperparameters estimated from the data, should
perform better than the extremes of the fixed effects model
or setting coefficients to zero. Ultimately, the goal of
probability modeling and Bayesian inference in a sample
survey context is to allow one to make use of abundant
poststratification information (e.g., census data classified by
sex, ethnicity, age, education, and state) to adjust a
relatively small sample survey.

Difficulties with modeling approaches such as ours
could arise in several ways. If one adjusts to a large number
of categories using too weak a model (such as the model
with unsmoothed state effects), the resulting estimates can
be too variable. If the population distributions of the
variables used in the poststratification are not available (for
example, adjusting to a variable that is not measured or is
measured inaccurately by the Census), then the N,’s must
be modeled also, which requires additional work. Of
course, such additional work would be required to rake on
these variables as well. Since all of the methods, including
raking and regression methods, assume ignorable models,
they will yield incorrect inferences when unmeasured
variables affect nonresponse and are correlated with the
outcome of interest.

The methods described here are intended as an impro-
vement upon raking-type poststratification adjustments and
are not intended to, by themselves, correct for nonignorable
nonresponse. However, by allowing one to adjust for more
variables, the Bayesian poststratification should allow the
use of models for which the ignorability assumption is more
reasonable. Having a large number of poststratification
categories (e.g., in 48 states) creates problems with classical
weighting methods because many categories will have few
or even no respondents. Interestingly, however, having
many categories can make Bayesian modeling more
reliable: more categories means more random effects in the
regression, which can make it easier to estimate variance
components.
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APPENDIX: COMPUTATION

We use an EM-type algorithm to estimate the hyper-
parameters T; given these, we sample from the posterior
distribution of the coefficients P using a normal approxi-

Gelman and Little: Poststratification Into Many Categories

mation to the logistic regression likelihood. We use this
approximation for its simplicity and because it is reasonable
for fairly large surveys, as in our application in Section
application; if desired, more exact computations can be
performed using the Gibbs sampler and Metropolis
algorithm (see Clayton 1996), perhaps using the algorithm
described here as a starting point.

When the data distribution is normal and the means are
linear in the regression coefficients, the EM algorithm can
be used to obtain estimates of the variance components
(Dempster, Laird, and Rubin 1977), treating the vector of
coefficients B as “missing data.” In this framework, the
“complete-data” loglikelihood for T, is

Kl

1
L(t,|,) = const - K logt, - — Z y,%l,
21 41

. . _ . K .
so the sufficient statistic for 1, is #(y,) = Y, Yiz- Given the
current estimate 1°¢, the expected sufficient statistic is

E@t(y) |y, 1) =
| E(y, | y, 9|2 + trace(var(y, | y, ™).

Since these two terms are not analytically tractable for our
model, we use the following approximations which are
easily obtained: (1) approximate E(y,|y,1°?) with an
estimate §, based on y and the estimate 4 and (2)
approximate var(y, | y, 704 from the curvature of the
log-likelihood at the estimate, 7, = (- L”(§,))"". Weupdate
these approximations iteratively forall / =1, ..., L simulta-
neusly, converging to an approximate maximum likelihood
estimate (%}, ....%,). Given an initial guess 4 the
algorithm proceeds by iterating the following two steps to
convergence.

Approximate E-step. Solve the likelihood equations
iteratively, as described below. Use the estimate {3 to obtain
an approximation to E(¢(y,) | y, °4), foreach /=1, ..., L.

We solve the likelihood equations d/dB L(B|y,t) =0
using iteratively weighted least squares, involving a normal
approximation to the likelihood p(v|B)=ILp(;|B),
based on locally approximating the logistic regression
model by a linear regression model (see Gelman et al. 1995,
p. 391). Let n, = (ZB), be the linear predictor for the i-th
observation. Starting with the current guess of B, let
f| = ZB. Then a Taylor series expansionto L (y, | 1,) gives z, =
N, af), where

. (1 +exp()’
Z =M " i
exp(f),)

exp(fi,)
1 +exp(f),)
2 (- exp@)y
exp(f);)
Let iﬁ denote the value of Zﬁ based on plugging in the

current estimate %, and let ) = diag(af). Then we obtain
an updated estimate and variance matrix using weighted
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least squares based on the normal prior distribution and the
normal approximation to the logistic regression likelihood:

p=z Y z+Y HzY @
5 X -1 = -1,.
Va=ZY Z+) )7 3)
We iterate until convergence and then use B and the

appropriate elements of Vl3 to estimate var(y, | y, 0y,

M-step. Maximize over the parameters T, to obtain
o™ = (E(t(y) |y, VK", foreach [ =1, ..., L. Set 1™
to ™" and return to the approximate E-step.

Once the approximate EM algorithm has converged to an
estimate £, we draw B from a normal approximation to the
conditional posterior distribution p(B | y,1), using the
values from equations (2) and(3) at the last EM step as the
mean and variance matrix in the normal approximation. For
each draw of the vector parameter B, we compute the
category means, 7 = logit™' (XB), and any population totals
of interest, counting each category j as Nj units in the
population.
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