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Inverse Sampling Design Algorithms

SUSAN HINKINS, H. LOCK OH and FRITZ SCHEUREN'

ABSTRACT

In the main body of statistics, sampling is often disposed of by assuming a sampling process that selects random variables
such that they are independent and identically distributed (IID). Important techniques, like regression and contingency table
analysis, were developed largely in the IID world; hence, adjustments are needed to use them in complex survey settings.
Rather than adjust the analysis, however, what is new in the present formulation is to draw a second sample from the original
sample. In this second sample, the first set of selections are inverted, so as to yield at the end a simple random sample. Of
course, to employ this two-step process to draw a single simple random sample from the usually much larger complex survey
would be inefficient, so multiple simple random samples are drawn and a way to base inferences on them developed. Not
all original samples can be inverted; but many practical special cases are discussed which cover a wide range of practices.

KEY WORDS: Finite population sampling; Inference in complex surveys; Resampling.

1. INTRODUCTION

The development of modern survey sampling is an
extraordinary achievement (Bellhouse 1988; Hansen 1987;
Kish 1995). The very richness in that development may have
had the effect, though, of isolating survey sampling from the
rest of statistics — where it is the richness of models that is
given emphasis. In fact, it is a well-known commonplace that,
in the main body of statistics, sampling is often disposed of
by assuming a sampling process that selects random variables
such that they are independent and identically distributed
(IID).

Important techniques, like regression and contingency
table analysis, were developed largely in this IID world;
hence, adjustments are needed to use them in complex survey
settings. Indeed, whole books have been written on this
problem (Skinner, Holt and Smith 1989); and much time and
effort have been devoted to it in software (like SUDAAN or
WESVAR PC) specially written for surveys (See also Wolter
1985). With all that has been done already, can something
more of value be added? We think we may have a
contribution to offer on how to deal better with the “seam”
which currently exists between IID and survey statistics.

Organizationally, the paper is divided into four sections.
This introduction is Section 1. In Section 2 and 3 a general
problem statement is provided and several “resolutions” are
offered in a few of the better known designs. Our approach is
to resample the complex sample to obtain an easier to analyze
data structure. Specifically, we cover stratified element
sampling, one and two-stage cluster samples, plus the
important two PSU per stratum design (Section 2). Because
any given resample is unlikely to contain all the information
in the original survey, we look at what happens when the
original complex sample is repeatedly resampled. A concrete
illustration of our ideas is also given in Section 3; this has

been taken from our practice and is based on a highly
stratified Statistics of Income (SOI) sample of corporate tax
returns (e.g., Hughes, Mulrow, Hinkins, Collins and Uberall
1994). In a concluding section (Section 4), we discuss a few
applications and some next steps needed for our still embry-
onic ideas to grow more useful.

2. PROBLEM STATEMENT AND POSSIBLE
“RESOLUTIONS”

2.1 Motivation and Basic Approach

Suppose we wanted to apply an IID procedure to a
complex survey sample. Suppose, too, that we wanted to take
a fresh look at “solving” the seam problem that occurs
because the survey design is not IID. How might one
proceed? Well, there is a familiar expression that may fit our
approach

If you only have a hammer, every
problem turns into a nail.

Now, as samplers, we have a hammer and it is sampling
itself. Can we turn the seam problem in surveys into a nail
that can be dealt with by using another sampling design?

It is our contention that some of the time the answer to this
question is “Yes.” We call this second sample design an
“Inverse Sampling Design Algorithm” — hence, the name of
this paper.

Aschematic mighthelp visualize the algorithm(see figure 1).
In the diagram two sampling approaches are compared — both
yitelding simple random samples from a population:

(1) The first design (top row) does this by employing a
conventional direct simple random (SRS) selection
process (e.g., Cochrane 1977), such that all possible
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samples of a given size have the same probability of
selection. (Such designs are often impracticable or
inefficient or both; hence, they are almost never used by
survey samplers, despite their ubiquity in textbooks.)

(2) The second design envisions a two-step process. The
first step is to sample the population in a complex way
that focuses carefully on the nature of the population
and the client's needs — using the client’s resources
frugally (this is the survey sampler’s province, par
excellence). -

(3) What is new in our formulation is to draw a second
(perhaps complex?) sample that inverts the first set-of
selections, so as to yield at the end a simple random
sample. Of course, to employ this two-step process to
draw a single simple random sample from the usually
much larger complex survey would be inefficient, so
we propose to create multiple simple random samples
and base our inferences on them.

. Usual Simple
Pth g: la - SRS _— Random
Selection Sample
Complex
Sample
Design
Complex Inverse Simple
Survey — Sample —_— Random
Sample Selection Sample

While elaborations are possible, the basic nature of the
algorithms we are talking about should, by this point, be
obvious. They can consist of just four basic steps:

(1) Invert, if you can, the existing complex design, so that
simple random subsamples can be generated (to some
useful degree of approximation).

(2) Potentially, apply your conventional statistical package
directly to the subsample, since that is now appropriate.

(3) Repeat the subsampling and conventional analysis, in
steps (1) and (2), over and over again.

(4) Retain, if you can, the flavour of the original
randomization paradigm by using the distribution of
subsample results as a basis of inference (rather than
the original complex sample).

Notice some things that this approach is — and is not: First, it
is extremely computer intensive — presupposing cheap, even
very cheap computing. Second, it presupposes that practical
inverse algorithms exist (which may not always be the case).
Third, it also assumes that the original power of the full
sample can be captured if enough subsamples are taken, so
that no appreciable efficiency is lost. Fourth, as much as it

may resemble the bootstrap (Efron 1979), we are not doing
bootstrapping. There is no intent to. mimic the original
selections, as would be required to use the bootstrap properly
(e.g., McCarthy and Snowmen 1985; Rao and Wu 1988) —
just the opposite; our goal here is to create a totally different
and more analytically tractable set of subsamples from the
original design.

2.2 Defining An Inverse Sampling Algorithm

Suppose that we wish to draw a simple random sample,
without replacement, from a finite population of size N.
Suppose further that the population is no longer available for
sampling, but we have a sample selected from this population
using a sample design D; let S,, denote this sample. Let S
denote a second sample of size m that could be drawn from
the population. An inverse sampling algorithm must describe
how to select a sample from S, so that for any given sample S |

Pr(select S, |S,) * Pr(S, < S,) = ——. )

N

m
The first step is to calculate the probability that an arbitrary
but fixed sample S, is contained in the sample S,.
Obviously, there are constraints on the size of the simple
random sample (SRS) that can be drawn in this manner; the
probability that S, contains S, cannot be zero. Certainly,
therefore, the SRS cannot be larger than the size of the
original sample S, and in fact the size of the SRS is
generally required to be much smaller than the original
complex sample.

The problem, then, is to find a general algorithm to select
an SRS from a given sample S, with the correct conditional
probability. It is also necessary to check that valid probability
functions are used. The following subsections show the
inverse sampling algorithms for a few of the more common
sample designs: stratified, cluster, multistage, and stratified
multistage designs. We also give an example where an inverse
algorithm at first does not appear feasible.

2.3 Inverting A Stratified Sample

In this subsection the inverse algorithm is given for a
stratified sample with four strata. The algorithm generalizes
for any number of strata. We have a stratified sample with
fixed sample sizes n, in each stratum 4, and known stratum
population sizes, N, + N, + N; + N, =N. Because a given
sample of arbitrary size m from the population might be
contained entirely within one stratum, the largest simple
random sample that can be selected from a stratified sample
is of size m =min{n,}.

For a given sample § , let (x,, Xy X3, x,) denote the
number of units in each stratum. Each x, will be between 0
and m, and x, +x, +x, +x, =m. The probability that S is
contained in the stratified sample is equal to the number of
stratified samples containing these m units divided by the total
number of possible stratified samples, i.e.
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The algorithm for selecting a SRS from the stratified

sample consists of the following three steps:

(1) Determine the size of the SRS to be selected:

m < min{n,}.

(2) Generate a realization {m,, ..., m,} from a hyper-
geometric distribution, with probabilities
N4J
4] 3)

N 1 N2 N3
il i2 i3
o

m
where i +i,+i;+i,=m and Osilsm,Osizsm,
Osi3sm, O<iy<m.

(3) In each stratum A, select a simple random sample of
size m,, without replacement, from the n, sample
units.

The conditional probability of selecting the sample S
given that it is contained in the stratified sample, is then

EIEIR .

The probability of selecting any given sample S using the
inverse algorithm is the product of the two probabilities given
in equations (2) and (4). It is straightforward to show that this
product is equal to

Ny-x,

N,-x,
=Xy

Pr(S < SD) = e

Pr(mI Tl My =iy, My =i,) =

1
N
m
Therefore this procedure reproduces a simple random
sampling mechanism unconditionally, /.e., when taken over
all possible stratified samples. Note that in order to generate
all possible SRS’s from this population, the entire sequence

must be repeated, starting with selecting a stratified sample
and proceeding through steps 1 - 3.

2.4 Inverting a One Stage Cluster Sample

In this subsection, we consider three special cases. To
begin with, we examine cluster samples where the clusters are
of equal size. This is followed by the more usual case where

13

the clusters are of unequal size. In both of these settings we
assume the clusters are sampled by a simple random sampling
mechanism and without replacement. The third case studied
is that of sampling unequal clusters by a probability
proportional to size (PPS) mechanism. In this last instance we
assume that the sampling is with replacement.

2.4.1 One Stage Cluster Sampling With Equal Cluster
Sizes, Sampled With Equal Probability

Assume we have a population of N clusters where all
clusters are of size M and & of them are selected by a simple
random sampling mechanism without replacement.

To construct an inverse algorithm, we need to decide what
the largest element subsample might be. It is immediate that
the largest SRS of elements that can be selected is £.
Incidentally, the cluster size is not a constraint on the size of
the subsample.

For a given sample S|, let g denote the number of clusters
represented in S;; 0 <g < k. Then the probability that S, is
contained in the cluster sample is equal to the number of
cluster samples containing these g clusters divided by the total
number of possible cluster samples, i.e.

Pr(S,< S,) = k;vq . (5)
Y

As for the stratified sample, the algorithm first determines the
number of units to be chosen from each cluster,
(m,m,, ..., m,). The probability distribution to be used to
select the m,’s is

[M) (M)

. a Ve N1, (V=g

PrOm el 1(NM - k((k—l))...((k—qf{«l)) ©
k]

where 0 < ij <k, iy +i,+...+i =k and g is the number of
nonzero ij’s. For example, with M =100, N=6,and k=3

( 100)( 100)( 100)
Pr(m, =1,m,=0,m,=2) =\ L\ O J\ 2 ) 625

Ee
8

6
*
600 3
3

Once the m,’s are determined, a simple random sample of
size m, is selected from cluster 7,/ = 1, 2, ..., k. Therefore the
conditional probability of selecting S, is

Pr(m, =3,m, =0,m,=0) =
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I, NNV-D.N-g+1) (7
(NM) k(k-1)...(k-q+1)
k

The probability of selecting a particular sample S, is found
by multiplying equation (5) times equation (7). It is routine to
verify that this gives the correct probability of selecting an
SRS.

Unlike the stratified example, where the function for
selecting the values of m, was a known probability function,
it is not immediately obvious that equation (6) describes a
probability distribution. Since the values generated by this
function are all nonnegative, it need only be shown that they
sum to one over the space of possible values. The first factor
in the equation has the form of a hypergeometric distribution,
except that the numerator is constrained to only & out of the ¥
clusters, while the denominator still reflects the total N
clusters. It is useful to define a partition of k as a combination
of positive integers that adds to &, without regard to order.
For example, the partitions of £ = 3 are {3}, {1,2}, and
{1,1,1}. Because the clusters are all of the same size, M, all
patterns of selection that correspond to the same partition
have the same probability of occurring. Take, for example,
N =6, and k= 3. In the full hypergeometric distribution, with
equal cluster size, each of the following combinations has the
same probability of occurring

Pr(select S, | S,) =

(0,0,0,0,1,2),(0,0,0,0,2,1),(0,0,0,1,2,0), ..., (2,1,0,0,0,0).

The total number of such combinations is
NN - 1)...(N - g + 1), where q is the size of the partition,
that is the number of (nonzero) values in the partition. In the
example above, ¢ = 2. For a given partition, if the nonzero
counts can only be put into & specific cells, then there are
k(k- 1) ...(k- g + 1) such orderings. Therefore, summing
the distribution over all values of (i, ..., i) can be done by
first summing over all partitions of £ and then for each
partition, summing over all possible orderings of that partition
in k cells. Because all orderings associated with a particular
partition share a common probability of occurrence, this
results in a summation that is equivalent to summing the
hypergeometric over the correct space, and therefore
expression (6) sums to one.

The probability distribution needed for this simple cluster
design (equation 6) is noticeably more difficult to generate
than the hypergeometric distribution in the case of the
stratified sample. However, as the sampling fraction &/N
decreases, the probability is often contained in only two of
the partitions: g = k and g = k- 1. (These probabilities are
calculated in the Appendix). Indeed, the probability may be
concentrated in just the pattern with g = & (A special case of
this is also shown in the Appendix).

Given the results in the Appendix, it may be possible to
approximate the exact inverse by selecting one case from each
cluster, using systematic sampling from the original cluster
sample. This approach is of real value because the probability

distribution calculations become unwieldy as the number of
clusters in the sample grows large. For a systematic inverse to
work, however, the “step” would naturally have to be at least
as large as M or maybe even greater, depending on the
number of clusters in the population. To carry out this
subsampling repeatedly, for each systematic sample inverse,
the units within each cluster would be reordered randomly
before the next selection and the clusters resorted randomly
as well - then another random start obtained before stepping
again through the original sample.

2.4.2 One Stage Cluster Sampling with Unequal
Clusters, Sampled With Equal Probability

The inverse sampling algorithm for a sample of clusters of
equal size does not generalize readily when a sample of
unequal sized clusters is drawn. This is so despite the fact that
it would appear to be straightforward to generalize this
approach in an obvious way. In particular, it does not seem
difficult to generalize the previous method so that the
“probabilities” would multiply out successfully to give the
“correct” probability of selection, i.e.

B

However, generalizing to unequal cluster sizes M, by

selecting the m, as
M, M,
i ) i) NN-).(v-g+ 1)

N k(k-1)...(k-g+1)

XM, )

1
k

N
, where M, =Y M. (8)
1

Pr(m,=i,,...,m =i)=

does not result in a valid probability distribution. We will
again assume, by the way, that the original clusters are being
sampled with equal probability and without replacement, as
was the case in subsection 2.4.1. Later (Subsection 2.4.3), as
already noted, we will look at original samples which employ
some form of Probability Proportional to Size (PPS)
selection.

To see that it is not straightforward to simply generalize
equation (6) into the form in equation (9), consider the
following counter-example where the “probability” calculated
using (9) is greater than one. Suppose N =4 with cluster
sizes; M, =4, M, =6, M, =8, and M, = 10. Suppose further
that we draw a cluster sample with & =2 and that just by
chance the two clusters picked are the largest — i.e., M, =8
and M, =10. It is immediate that with these selections,
equation (9) would generate a probability of selecting one unit
from each cluster that was greater than one.

Can this difficulty be fixed? Yes, although not perhaps in
an entirely satisfactory way. One method is to employ a
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hypergeometric that assumes all the clusters were as large as
the largest cluster in the population. The price paid is that the
inverse sample size achieved is no longer fixed, and the
resulting subsample is only conditionally SRS given the
achieved sample size, denoted, say, as k. That s, for a given
sample size k,, k, < k, all samples of size k; have the same
probability of being selected using the inverse algorithm.
Let M, denote the maximum cluster size, M, =
Max{M,, M,, ..., M, }. Create apopulation by filling out each
original cluster with “dummy” units or placeholders,
j=M+1,M + 2,...M_. Then using a method similar to
Lahiri's (1951) for PPS sampling, the inverse algorithm
selects units from the population consisting of N clusters each
of size M,, and then discards any element not in the
“subpopulation” consisting of the original clusters of size M.
Specifically, given a cluster sample consisting of &
clusters, select the vector m from the probability distribution

Pr(m, =i,,...m, =) =

[M*][M‘] [M*J
J 5 i . N(N-1)..(N-q+1) (10)

k(k-1)...(k-g+1)

where the components of m sum to &, and g of the
components m, are'nonzero. This is now a proper probability
distribution. Given the selected value of m, select a random
sample of m, units from cluster #, where the cluster contains M,
units from the population and M, - M, “placeholders.”
Discard any selected units that are placeholders, in the set of
J=M +1,M +2,.,M, Therefore the final sample size
will not necessarily be equal to k, but may be smaller, say &,

The resulting sample is conditionally a SRS from the
population, in the sense that for a given value of kj, all
samples of size k, have the same probability of being selected
using this inverse algorithm. To see this, continue to view the
problem as a subpopulation, P, of N clusters of size
M,i=1,..,N, within a population P, of N clusters each of
size M,. Note that for any sample, S,, of size k selected
from the population P, the probability of selecting S, using
the inverse algorithm is

[ NM*] ' (11)

If k, = k then this is the probability of selecting this sample
using the inverse algorithm. For a fixed k, < &, let S, denote
any given sample of size k, contained in P. We can generate
asample S_ containing S by starting with S, and adding to
it k - k, elements from the N*M, - M_ placeholders in P..
The number of such samples S, that result in selecting S, is

15

N
where M, =Y M, (12)

i=1

NM, - M,
k- k,

Therefore, the probability of selecting S, using the inverse
algorithm is equal to the probability of selecting S, using the
inverse algorithm, given in (11), summed over all samples S,
constructed as described above, where the number of such
samples is given by (12). This probability equals

NM-M,
k- k,
NM,
k
and all samples of size k, have the same probability of being
selected using the inverse algorithm.

There is a positive probability, unfortunately, that a sample
might be selected with this approach that has no elements.
This could occur if there were a large difference in the cluster
sizes. However, if the number of clusters & in the original
sample is large, this is unlikely to be a problem.

Again, as in the case of equal cluster sizes, an approxi-
mation is available using a systematic subsample as an
inverse. This time we would want a step at least as large as the
maximum cluster size. Using a systematic inverse, by the way,

would have the advantage of controlling better the actual
subsample size drawn.

2.4.3 One Stage Cluster Sampling with Unequal
Clusters, Sampled With Unequal Probability

If a sample of k clusters is selected with PPS, an inverse
algorithm may exist. Suppose the samples are selected with
replacement from a population consisting of N clusters, with
unequal cluster sizes, M\, M,, ..., M,. Suppose, further, that
the measure of size is either equal to M, or proportional to
M. Then at each draw,

N

N

Pr(select cluster j) = E

N (13)
where Mfz M.

i=1

Finally, since a one stage sample is being taken, once cluster

J is selected, then all Mj units from that cluster are included

in the sample.

An inverse algorithm in this case should result in a
SRSWR. That is, for any vector § resulting from k&
independent selections from the population, the probability of
selecting the ordered vector is

+

1)*
Pr(sel = —1 .
r(select .§') [ v; ] (14)
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An inverse algorithm is to simply randomly select one unit
from each cluster in the cluster sample. Because the clusters
were chosen with replacement, one should think of the
sampled clusters as being ordered, by the order in which they
were selected, or in any fixed order. For example, if the
population contained 20 clusters, a possible cluster sample of
size k=51is(7,5,7, 18, 6), etc.

The population consists of M _ units, denoted as
U, U,, ..., 4,,,. Let S denote a given sample, with replace-
ment, S = (s, 5,, ..., 5;), and let ¢ =(c,, ¢,, ..., ¢;) denote the
associated cluster for each unit. For example, suppose the
population is:

Cluster Units

1 u U, Uy U,

Us Ug Uy Uy

U, u

g Uyp Uy

Up U3 Uy

U U, U

15 16 717

(= N R I

Upg Uy Uy

and k = 3. Then the sample(s, = u,, 5, = 4, §; = u,;) corres-
pondsto ¢ = (1,1,5). Thesample (s, = ug, 5, = u,g, 55 = U;g)
corresponds to ¢ = (6, 6, 6). Note that this second sample can
only be selected if cluster 6 is the only cluster chosen in the
cluster sample.

For a given sample S of size &, and the corresponding
vector ¢ of cluster membership, the unconditional probability
of selecting S using the inverse algorithm is

Pr(select S | cluster sample ¢) * Pr(select ¢) =

ko f[ Mc(i) (15)
i=1 Mc(,-) i=1 M,,

which is equal to the desired probability, equation (14).

Note that this same inverse algorithm works in the case
where k clusters are selected with ppswr, but a sample of
fixed size m is selected (srswor) from the chosen cluster,
assuming that M, > m for all clusters i .

2.4.4 Some Comments On One Stage Designs.

We have seen that, with care, inverse algorithms can be
constructed for several special cases where the original
sample has a one stage cluster design. Two of our results are
for cluster samples drawn with equal probability without
replacement. The third is a ppswr design.

A convenient systematic inverse may even be workable as
an approximation to the correct inverse algorithm when we
have a cluster sample. The approximation works when using
SRSWRis “close to” SRSWOR —i.e, in our notation when &/NM
is very small so that 1/(NM - k + 1) is approximately equal to
1/NM. So everything seems intuitively to be consistent,
across the cases studied.

Many cluster designs do not fall into any of the special
cases examined. For some of them we conjecture that exact
inverse algorithms may not exist. In particular, the general
case of PPSWOR sampling seems to be one of these,
including the frequently used variant of systematic PPSWOR.
This may, or may not be a problem for practitioners who often
employ the (usually) conservative practice of assuming that
the sampling was with replacement — in which case an inverse
algorithm would exist to the same order of approximation as
was being assumed to estimate variances.

2.5 Multistage Cluster Designs

What about multistage designs? Can they be inverted? In
some cases, we believe the answer is “Yes.” Three designs
will be looked at: (1) a two-stage design with simple random
sampling at the first and second stages (Subsection 2.5.1);
then, (2) a design which employed probability proportional to
size (PPS) sampling at the first stage and simple random
sampling at the second (Subsection 2.5.2). Finally, (3) the
very important stratified multistage design with two PSUs per
stratum deserves at least a brief comment.

As will be seen, the stratified and one stage results extend
fairly readily. To demonstrate this, our basic strategy is to
repeatedly apply the approaches already discussed earlier.

2.5.1 Multistage Designs With Simple Random
Sampling at Both Stages

Suppose, first, that originally a simple random sample of
k clusters, all of size M, was drawn at the first stage and a
simple random subsample of size 7’ was drawn at the second
stage, within each cluster selected at the first stage.

As earlier, our inverse sample can be no larger than .
Suppose first that 1/(NM - k + 1) is approximately equal to
1/NM, then we can employ an srswr inverse algorithm, since
SRSWR and SRSWOR are very close. Using the results in
Subsection 2.4.3, we would take a SRSWR sample of &
clusters and then within each selected cluster take one
observation at random. Alternatively, we could as in
Subsection 2.4.1, first determine the number of units to be
chosen from each cluster, (m,, m,, ..., m,). Once the m’s are
determined, a simple random sample without replacement of
size m, is selected from cluster i,7 = 1, 2, ..., k. This may be
a nearly exact result, except for the possibility that the inverse
second stage sample size m, may be larger than the original
second stage sample size “r.” When this occurs, we still can
appeal to the results in Subsection 2.4.2 and draw our second
stage sample with “placeholders.” In this second instance, the
resulting actual sample would no longer be fixed; but still
would be conditionally SRS. If the first stage clusters are
unequal in size but sampled with replacement, then we can
again employ the trick used in Subsection 2.4.2 of creating
“placeholders.” The sample sizes are random and only
conditionally do we achieve an SRS inverse.

Another way to approach this problem is to note that the
largest SRS that can be selected using an inverse algorithm is
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of size k, =min{k, r}. This is done by first determining the
number of units to select from each cluster, (m, m,, ..., m,),
where now the m,’s must sum to k; rather than k. Once the
m,’s are determined, a simple random sample of size m, is
selected from cluster 4,7 = 1, 2, ..., k. The probability distri-
bution to be used to select the m,’s is

M) (M
i i) ,N(N-1)..(N-g+1)

[ NM] k(k-1)...(k-g+1)

Pr(m, =i, ...,mkzik)=[

k

where 0 < i< ko, iy + iy +...+ i, = ko, and g is the number of
nonzero i.’s.

One final comment, for both equal and unequal cluster
sizes, the possibility of an approximate systematic inverse
seems available — with essentially the same caveats, of course,
as noted above.

2.5.2 Multistage Designs With PPS Sampling at the
First Stage and SRS Sampling at the Second

Again, our inverse sample can be no larger than £. It is
immediate that one way to construct an inverse would be to
use the results in Subsection 2.4.3. Specifically, we would
take a srswr sample of £ clusters and then within each selected
cluster take one observation at random. Other inverse
algorithms may exist too. A systematic inverse seems
reasonable, provided the probability of selecting the same
cluster more than once is small to vanishing.

2.5.3 Stratified Multistage Designs With Two PSU’s
Per Stratum

Can two Primary Sampling Unit (PSU) designs be
inverted? Our answer is “Yes,” if the within stratum
selections are made in one of the ways we discussed in detail
earlier. This is basically the only case we will cover.

From our results in Subsections 2.3 and 2.4, it is
immediate that if an inverse is to exist, then the sample size m
cannot be any larger than m = 2. Depending on the sampling
within each strata, we could employ one or more of the exact
or approximate inverses to obtain two SRS selections within
each stratum. To obtain an overall SRS sample, we would
employ the inverse algorithm of Subsection 2.3 on these two
selections and end up, finally, with just two selections overall.

2.5.4 Some Comments On Multistage Designs

In this Subsection, we have quickly covered a few
multistage designs and provided exact or approximate
inverses. The results were derived by appealing to earlier
results in Subsections 2.3 and mainly 2.4. Of course, many
multistage designs do not fall into any of the special cases
examined - notably those with systematic selections at the last
stage.
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One last observation, many readers may wonder, at this
point, how a method that selects only a sample of size two (as
we did in Subsection 2.5.3) can be of any practical value.
Perhaps the next section will help.

3. RESAMPLING TO INCREASE POWER

3.1 General Setting

Drawing a single, smaller simple random sample from a
larger, more complex sample might be adequate for some
users in some settings. However, for most users, the loss in
power between the estimate based on the complex sample and
the estimate based on a simple random sample would not be
acceptable.

In order to increase the power of our approach, it was
natural to consider resampling techniques. We are limited in
the size of the SRS that can be drawn, but we can repeat the
process. By repeating the entire subsampling procedure, we
can generate g simple random samples each of size m, where
each SRS is selected independently from the overall original
sample. Each repetition must include all steps of the
subsampling procedure. For example, in the stratified case,
the stratum subsample sizes must be redrawn using the
hypergeometric distribution.

In this section, conditions are given under which the
precision of the estimates using multiple SRSs can be made
arbitrarily close to the precision of the original estimates. We
will begin our discussion by first defining some notation.

Let D denote any invertible design (such as a design of the
type covered in Section 2). Let T be the population quantity
of interest (say, a population total); and let T, be an unbiased
estimator of T calculated from the sample §,. Suppose g
simple random samples are independently drawn from the
given sample §,, and let ¢, denote the estimator from the i-th
simple random sample. Then it can be shown that

if E@,|Sp) =T,

then Var( 1y t,.) = Var(T,) + L (Var(t,) - Var(T,).
g i=1 4

Proof: Because the g replications of the simple random
sampling process are conditionally independent, then

for i+, E(t;t,|S,) =T,

Therefore, unconditionally, for i not equal to /,

Cov(t,t) = E(t,t) - T
= Var(T,).

And the result follows directly.

Some of the conditions in this proof can be relaxed; if T,
is biased, then similar results can be obtained for MSE instead
of variance. However, the condition that
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E(1,|S,) =T,

is necessary. And this condition is not met for ratio
estimators. But, if the condition is met separately for the
numerator and for the denominator of the ratio estimate and
if the final size of the combined sample is sufficiently large so
that a Taylor Series approximation is acceptable, then similar
results can be found for approximations to the variance for
ratios in the usual manner. Incidentally, even in the two PSU
per stratum design, this approach works — provided we can
obtain an unbiased estimate from each individual sample of
size 2. And for estimates of totals, this can be the case —
assuming at each stage of sampling that an inverse can be
constructed.

3.2 Estimating The Sampling Error for Means
or Totals

By resampling, one can achieve almost the same precision
as the original design estimator. But because the resampled
srs's are only conditionally independent, the estimation of the
standard error is not as simple as if only one srs had been drawn.
However the estimation remains relatively straightforward.

Let S? denote the population variance for the variable X
and let T be its population total. For the sample means, totals
and variances calculated from the generated simple random
samples, let

t*x= l Xg:t:_l_ Zg:N_ =l zg:iv— zm:xl
gj=lj g -1 / g]=1mi=lj
2 1 “ -
2 _ 1 2 & - 2
S, =V —— Zz(le-x**)
gm-1);1=1
t

where X,, = — -1 DIDIE
J i

Note that the sample variance using all gm units can be
expressed as

2 1 E 2 mE 2 mg 2-
sl= (m- DY s+ 23 -1 - 2, - T|.
mg - 1 JEI’ NZFEI ! N? _
Hence
1 m & mg
E(sD) = m- 1)S*+—Y Var(t) - —=Var(,,)|-
) D NZ_/ZI: (v

Rewriting this gives

Var(, ) = N2( l”;l-)sz R ( l)zglj Var(t)

m £/

- NZ( mg - 1)E(sf).
mg

Therefore, by replacing S* and Var(z) with unbiased
estimates and replacing E(sf) with sf, we can generate
approximately unbiased estimates of Var(z,,).

It may be worth emphasizing that this result does not
require the user to know anything about the original sample
design. If users are given a way to invert the original design,
then they can, by repeated subsampling, achieve nearly the
efficiency of the original design and readily estimate the
appropriate sampling errors. There is one condition on this
result, namely that the subsample size be such that m > 2.
Incidentally, for m = 2, the variance expression becomes

varr,) - 252 4 ( 1) 3 Var(t) - Nz( ﬂ) E(s?).
2 g/ ia 2g

Based on this, as above, a variance estimator could be built
for two PSU per stratum designs.

3.3 An SOI INlustration

In this subsection we consider an example of an inverse
algorithm and how well it works. The Statistics of Income
(SOI) corporate sample will be our starting point. Now, as
noted earlier, the SOI sample has essentially a stratified SRS
design and so can be inverted (subsection 2.2).

It is our belief that many SOI users might find a full SRS

‘inverse sample more valuable and easier to employ than the

complete, stratified sample data base. An interim goal could
be to provide them with a set of simple random samples. A
more flexible system would be to provide the interactive
software to allow the user to designate the simple random
samples of interest, to be selected from the complete data
base.

In our simulations we used four of the strata in the SOI
sample of corporate returns, namely the strata representing the
smallest regular corporations (Hughes et al. 1994). As can be
seen from table 1, the stratified sample (of four strata)
consisted of 15,618 units, and the largest SRS that can be
selected is m = 2,224. The table also shows the population
sizes and the estimated variance of the variable Total Assets,
within each stratum.

Table 1
Corporate Population and Sample Size, plus Estimated
Stratum Variances, For Four SOI Stratum

2z
Szpa)ta Ny "h (in f 000s)
1 1,376,801 3,889 222,308
2 552,909 2,224 670,162
3 678,371 4,005 12,796,578
4 436,023 5,500 14,984,753

The variable total assets was used because it is the primary
stratifying variable; and, therefore, the loss in precision due
to removing the stratification should be relatively large.
Indeed, this proved to be the case.
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Shown below is the ratio of the variance of the estimated
total using g simple random samples, of 2,224 each, divided
by the variance of the total based on the stratified sample.
The table displays values of g from 1 to 1,000. For example,
if only one SRS is selected the variance of the estimated total
is 29 times larger than the variance of the stratified total.

g Relative Variance Increase
1 29.31
2 15.16
10 3.83
100 1.28
500 1.06
1000 1.03

By resampling 500 to 1,000 times, the variance has been
reduced to the same order of magnitude as the stratified
sample. Even at 100 subsamples good results exist here,
suggesting that the use of an inverse algorithm could work
well for strata such as these. This is not to recommend that an
inverse algorithm be employed in general with so few
resamples. Doubtless, in highly skewed populations a much
larger number would be required.

4. POTENTIAL APPLICATIONS
AND NEXT STEPS

In this paper we have shown that inverse sample design
algorithms exist in a few special cases. We do not, as yet,
have a general result — if, indeed, there is one. This is clearly
a part of the problem that needs more work. Like most tools,
an inverse sampling algorithm may not be the best choice in
certain cases; it may not be even a reasonable alternative in
some circumstances. But there are applications where it
appears to have advantages and so should be considered. In
this section we both briefly suggest areas where this
methodology may be useful and also mention some of the
limitations and problems that remain.

Customer-Driven Perspective — It is worth emphasizing the
customer-driven nature of our approach. Even if it could not
be justified on other grounds, inverse algorithms might be
advocated as a part of “reinvention” (e.g., Osborne and
Gaebler 1992). Right now many large complex surveys may
not be sufficiently benefiting society, because they are so
badly under-analyzed or even misanalyzed:

— For the long run, we must work towards increasing the
survey and general quantitative literacy of existing and
potential customers — e.g., as with the new series What
Is a Survey? (Scheuren (ed.) 1995).

— In the short run, we need to start where our customers
are — giving due respect to the often small part that
survey data may add to their decision making. Certainly
it is worth thinking about ways to lower the cognitive
costs customers bear when using our complex survey
“products.”
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A “Sample” of Possible Opportunities — There is an
increasing awareness of the weaknesses within the
traditional randomization paradigm (e.g., Sérndal and
Swensson 1993). Of particular concern here is all the fiddling
we have to do when trying to.correct for nonsampling errors.
Some of this flavour is evident in Rao and Shao (1993). By
putting the possible adjustments for these nonsampling errors
back into a simple random sampling framework, we may,
indeed, be able to make more progress.

For decades, survey practitioners have elaborated
exceedingly complex sample designs; and, then, made
efficient point and confidence interval estimates from them.
On the other hand, how much do we really understand about
the distributions that our sample estimators generate when
effective sample sizes are small to moderate? Will we be able
to fully capitalize on the “visualization revolution” now
occurring (e.g., Cleveland 1993)? Particularly in the presence
of nonsampling error? Maybe we should be building in a way
to always look at distributions. The use of an inverse
sampling algorithm might be one possibility (See also
Pfeffermann and Nathan 1985). In any case, stronger
visualization tools for complex surveys could help, even the
very experienced among us, deepen our intuitions and connect
them better to the particular population under study.
Obviously, visualization efforts also pay off by lowering the
price customers pay to use survey data.

An intriguing problem where the inverse sampling
algorithm may have an application is the case where we have
a two PSU per stratum design with L strata where L is small,
say less than 30. Suppose further that for some of the
variables in the survey the stratification and clustering are
unimportant — i.e., the design effect is & = 1, approximately.
For these variables, would it not be possible for the stability
of the variance estimate to be greater with the resampled
method than with the Balanced Repeated Replication (BRR)
approach to variance estimation that is usually employed?

Another example that we are considering is the case where
the user is interested in tests of independence in 2 x 2 tables,
based on stratified sample data (Hinkins, Oh and Scheuren
1995). For the chi-square test statistic we are now in the
midst of comparing our results with the approach suggested
by Scheuren (1972) and Fellegi (1980). So far it appears that
the power of our method is comparable to these more familiar
approaches (as might be expected from, say, Westfall and
Young (1993)). This may be an instance where the extra
work involved in the inverse sampling algorithm may have
real benefits — beyond just making it easier for users to
employ familiar tools — by allowing the user to look at the
distribution rather than just one p-value.

A “Sample” of Problems Remaining — A “sample” of the
problems that remain with our inverse algorithm might be
given here. For example, what happens when we do not know
what the population size is? What happens when the
population has more than one elementary unit — persons, say,
for one analysis; households for another; neighbourhoods for
still a third? Answers exist for these difficulties but they have
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an ad hoc flavour to us. In many surveys, for instance, we
guess about N and use that guess in poststratification. That
degree of approximation for an inverse might be acceptable.
For the problem of multiple analysis units, we could do
several inverses. While potentially workable, this seems
exceedingly awkward.

We have indicated that in some cases it may not be too
difficult to resample multiple times using the inverse
algorithm in order to reproduce reasonable efficiency. But
what about the case where the user of a stratified sample is
interested in subpopulations. If the domains of interest are in
fact the strata, then the user does not gain any benefits by
using the SRS’s produced using the inverse algorithm. If the
domains of interest cut across the strata and they are small,
then the number of samples required using the inverse
algorithm may be very large in order to maintain reasonable
estimation for the domains.

Finally, we briefly mention one more problem that we have
thought about. Many multistage designs actually select only
one PSU per stratum. The strata are then paired for variance
estimation purposes. We have already noted that an inverse to
this approximation is available which can be made about as
good as that approximation is to begin with. Is there a way to
get a better approximation using the inverse approach
directly?

Last Words — Many things are changing in our profession.
The worldwide quality revolution certainly has had an impact
(Mulrow and Scheuren 1996). We are remaking the way
surveys are done — from design, to data capture, to the way
customers use them. This paper may be a small contribution
to that process.
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APPENDIX

Suppose one has a cluster sample of & clusters from a
population of N clusters, where each cluster has the same
number of units, M. In the inverse sampling algorithm, the
first step is to choose the vector (m,, m,, ..., m,) containing
the number of units to be chosen from each cluster. Let g
indicate the number of nonzero values of m,. The probability
of selecting the one pattern with g = k, that is the pattern with
m, =1, forall i=1,2, Y A

(N-DIN-2)..(N-k+1)

Pr(g = k) = M*! )
(NM - 1)(NM - 2)...(NM -k + 1)

Call this probability P,. If NM>>>k then P, can be
approximated by

ﬁ (N-§) _(N-DWN-2)..(N-k+1)
i=1 N Nk-l '

Consider next the partition of k corresponding to
g = k- 1; this corresponds to exactly one partition of &,
namely {1,1,..,1,2}. There are k(k- 1) equally likely
possible patterns of (m,,..,m,) with g=k-1. The
probability of selecting a vector m with g = k- 1, is

k- D=1,
IMN-k+1) "
Therefore it is not difficult to calculate the probability that the

selected m has either g = k or ¢ = k- 1. The following table
shows some examples for two values of M.

Pr(g=k-1)

Table A
Prig=k-1lorg=k

k N M=10 M=100

4 8 92 .90

4 20 .99 .98
10 20 .38 34
10 30 .63 .59
10 50 .83 .80
10 200 .99 .98
50 500 .35 .30
50 1000 70 .66
50 5000 98 .98

For small k, it is not difficult to calculate the entire
probability distribution needed to generate m. But as &
increases, the number of partitions increases, and this
calculation becomes difficult or at least tedious. For & =4,
there are only 4 partitions; for &k = 10 there are 39 possible
partitions. One can see from Table A, that as the cluster
sample becomes “larger,” if the sampling rate is small
enough, i.e., if k<<AN, then one might only need to calculate
the probabilities for these two partitions in order to
approximately invert the cluster sample. For £ =10 and
N =200, these two partitions essentially account for all of the
probability distribution.

The probability of selecting just one unit per cluster
(g = k) is smaller than the values in Table A; so, in order to
use a systematic inverse, we would want k<<<AN. This can
be obtained in some settings when the number of clusters is
large and we are willing to take & very small, relying on
repeatedly resampling the original survey, as described in
Section 3.

To illustrate, assume a sample of size k0 where, of course,
k0<k, so that an inverse is possible; Further, to see if a
systematic inverse would work, let ky<<<N. This is the
case we illustrate in table B. In table B, we have confined
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attention to just one value of N, N = 5000 clusters, although
the results could be extended readily.

Table B
Pr{inverse sample picks the pattern (1,1, ..., 1)}

k, k/N M=10 M=100

.0004 9998 .9998

.001 .9982 9980

10 .002 9919 9911

20 .004 .9663 9627

30 .006 .9245 .9166

40 .008 .8687 .8553

50 .01 .8015 .7821

Clearly, as k/N gets small, a systematic sample becomes a
better and better approximate inverse. Only experience would
confirm if the approximation at k, = 20 and k/N = .004, say,
is adequate. We think it might be, especially since the effect
of using a systematic inverse usually is to make the variance
calculations more conservative (since typically the intracluster
correlation p > 0).
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