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Model-Based Estimation of Record
Linkage Error Rates

J.B. ARMSTRONG and J.E. MAYDA!

ABSTRACT

Record linkage is the matching of records containing data on individuals, businesses or dwellings when a unique
identifier is not available. Methods used in practice involve classification of record pairs as links and non-links using
an automated procedure based on the theoretical framework introduced by Fellegi and Sunter (1969). The estima-
tion of classification error rates is an important issue. Fellegi and Sunter provide a method for calculation of classifica-
tion error rate estimates as a direct by-product of linkage. These model-based estimates are easier to produce than
the estimates based on manual matching of samples that are typically used in practice. Properties of model-based
classification error rate estimates obtained using three estimators of model parameters are compared.

KEY WORDS: Mixture model; Latent variable model; Iterative scaling.

1. INTRODUCTION

Computer files containing information about individuals,
businesses or dwellings are used in many statistical applica-
tions. The linking of records that refer to the same entity
is often required. The process of linking records referring
to the same entity is called exact matching. If all records
involved in an application have been accurately assigned
a unique identifier, exact matching is trivial. Record
linkage methods deal with the problem of exact matching
when a unique identifier is not available. In that case, each
record typically includes a number of data fields containing
identifying information that could be used for matching.
Problems in matching are due to errors in these data or
due to the same value for a particular field being valid for
more than one entity.

Applications of record linkage include the undupli-
cation of lists of dwellings or businesses obtained from
various sources to create survey frames. In addition, record
linkage is widely used in applications related to health and
epidemiology. Work in this area typically involves matching
records containing information on individuals in industrial
or occupational cohorts to records documenting the illness
or death of individuals. For example, record linkage meth-
odology for follow-up studies of persons exposed to radia-
tion is discussed in Fair, Newcombe and Lalonde (1988).

The record linkage problem can be formulated using
two data files that correspond to two populations. Each file
may contain information for all entities in the corresponding
population or information for a random sample of
entities. The file A contains N, records and the file B
contains N records. The set of record pairs formed as the
cross-product of A and B is denoted by C ={(a,b);

a€A,beB). C contains N = N, - Ny record pairs. The
objective of record linkage is to partition the set Cinto two
disjoint sets — the set of true matches, denoted by M, and
the set of true non-matches, U.

The theoretical framework introduced by Fellegi and
Sunter (1969) is the basis of a great deal of applied work.
For each record pair, a decision is taken concerning whether
or not the records refer to the same entity after examining
data recorded on files A and B. The possible decisions are
link (A,), non-link (A3) and possible link (A4,). There
are two types of errors. First, decision A, may be taken
for arecord pair that is a member of U, the set of true non-
matches. Second, decision 4; may be taken for a record
pair that is a member of set M, the set of true matches.
Acceptable levels of classification error are specified
before the files are linked. A record pair is classified as a
possible link if the data do not provide sufficient evidence
to justify classification of the pair as a link or non-link at
error levels less than or equal to those specified. Accurate
estimation of classification error rates associated with
various decision rules is necessary to determine an
appropriate rule. The classification error rate for true non-
matches is P(A,; | U). The error rate for true matches is
P(A; | M).

Estimates of classification error rates can be obtained
by selecting a sample of record pairs from the set C and
manually determining the true match status of sampled
pairs. Applications of this approach are described in
Bartlett et al. (1993). Sampling may be both costly and
cumbersome to implement, particularly when the same
linkage must be done for a number of pairs of files, each
with slightly different characteristics. Belin and Rubin
(1991) describe another method of error rate estimation
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that requires true match status for record pairs in a pilot
study. In contrast to the straightforward sampling approach,
the Belin-Rubin method provides a framework for the
application of information obtained from the pilot study
to larger linkages involving similar data.

The Fellegi-Sunter framework provides a method for
calculation of error rate estimates using estimates of proba-
bilities that record pairs will agree on various combinations
of data fields. Calculation of these model-based error rate
estimates is straightforward and manual determination
of the true match status of record pairs is not required.
However, they often have poor properties in applied work.
See, for example, Belin (1990). In this paper, the potential
for improvement of the properties of model-based error
rate estimates through careful estimation of agreement
probabilities is examined.

Three alternative estimation methods are evaluated.
The approaches described use only the information on
files A and B. They do not rely on auxiliary information.
Model-based error rate estimates obtained using each
alternative are compared with actual error rates using
both synthetic data that incorporate important charac-
teristics of data from health applications of record
linkage, and information from an actual record linkage
application.

The plan of the paper is as follows. Section 2 includes
details of the model-based classification error rate estima-
tion method introduced by Fellegi and Sunter. The model
for agreement probabilities that forms the basis of subse-
quent discussion of estimation methods is also specified.
Two estimation methods that rely on an important inde-
pendence assumption are described in Section 3. A third
alternative that does not require independence is discussed
in Section 4. The results of comparisons of the three
approaches using synthetic data are reported in Section 5.
The results of evaluation work with information from a real
application are described in Section 6. Section 7 contains
some concluding remarks.

2. THEORETICAL CONCEPTS

Relevant aspects of the theory for record linkage devel-
oped by Fellegi and Sunter (1969) are summarized in this
section. In the Fellegi-Sunter framework, estimates of
classification error rates are calculated using estimates of
probabilities of agreement on various combinations of
data fields. Applications of the theory of Fellegi and
Sunter usually involve the assumption that the probability
that a record pair will agree on a particular data field is
independent of the results of comparisons for other fields.
The theory is nevertheless very flexible, allowing for any
pattern of dependence between results of comparisons for
different data fields. A parameterization of dependence
in terms of loglinear effects is given.
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2.1 Model-Based Classification Error Rate Estimation

To obtain information related to the classification of
a record pair as a link (A,), non-link (A3) or possible
link (A,), data fields containing identifying information
are compared. In an application involving records refer-
ring to persons, separate comparisons of family names,
given names, and dates of birth might be performed. The
outcome of a comparison is a numerical code representing
a statement like ‘‘names agree’’, ‘‘names disagree’’,
‘‘name missing on one or both files”’, ‘““names agree and
both are George’’ or ‘‘names disagree but their first two
characters agree’’. The outcome codes used in applied
work differ between applications and between comparisons
in the same application. The smallest number of outcome
codes that can be used for any comparison is two — corres-
ponding to agreement and disagreement. An outcome
code corresponding to ‘‘missing on one or both files’ is
usually needed in applied work. The agreement outcome
may be replaced by a number of value-specific outcomes
(such as ‘“‘names agree and both are George’’). Certain
disagreements may be coded as partial agreements (such
as “‘names disagree but their first two characters agree’’).

For present purposes, we consider agreement and disa-
greement outcomes only. In the case of K matching fields,
we introduce the outcome vector x/ = (x4, x4, ..., x%)
for record pair j. We have x4, = 1if record pair j agrees
on data field k and xJ, = 0 if record pair j disagrees on
data field k.

Newcombe et al. (1959) introduced the idea that decisions
concerning whether or not a pair of records represent the
same entity should be based on the ratio

R(x) = P(x| M)/P(x| U), (M

where x = (x;, X, ..., Xg) is the generic outcome
vector, P(x | M) is the probability that comparisons for
a record pair that is a true match will produce outcome
vector x, and P(x | U) is the probability of x for a record
pair that is a true non-match. The optimality of record
linkage methods involving this ratio was demonstrated by
Fellegi and Sunter.

In the Fellegi-Sunter framework, a linkage rule assigns
a probability of each classification decision (A;, A; and
Aj3) to each outcome vector. The decision function cor-
responding to outcome vector x is d(x) = (P(A4;| x),
P(A,| x), P(A;3]| x)). Acceptable rates of classification
error for true non-matches and true matches are specified
before linkage is conducted. We denote these pre-specified
error rates by p and A respectively. Among the class of
record linkage rules satisfying the relations P(4, | U) = p
and P(A;| M) =< \ for fixed values of 1 and A, Fellegi
and Sunter define the optimal linkage rule as the rule that
minimizes P(A,), the probability that a record pair will be
classified as a possible link. The optimal rule has the form
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d(xy = (1,0,0) if o > 7
d(x)y = (P,1 — P,0) if o =7
dix)) = (0,1,00 if <l <7 @

d(x’y = (0,1 = P, P)) if o' =1

d(x) = (0,0,1) if o <7

where 7, = 7,, the ““weight’’ «’ is defined as w’ =
log(R(x’)) and P, and P, are positive constants in the
interval [0,1). (Refer to Fellegi and Sunter (1969) for full
details.) Determination of 7; and 7, requires the estimation
of classification error rates corresponding to various choices
for these threshold values, underscoring the importance
of accurate estimation of classification error rates in the
Fellegi-Sunter framework.

Model-based estimates of classification error rates can
be calculated using estimates of outcome probabilities for
true matches and true non-matches. Let P(x | M) and
B(x | U) denote estimates of the probabilities of outcome
vector x for true matches and true non-matches and denote
the ratio of these estimates by R (x). The model-based
estimate of the classification error rate for true matches
based on decision rule (2) is

A=) Px|M +P ) PxiM 3

xel (7)) X€Q(7)

where L(7;) = {x; log(R(x)) < 7} and Q(1y) =
{x; log(R(x)) = 72}.

The model-based estimate of the classification error
rate for true non-matches is

p= ), PxlUO+PR Y PxlU) @&
x€G(71) xeQ(7))

where G(7,) = {x; log(R(x)) > 7;} and Q(r)) =
{x; log(R(x)) = 7,}.

2.2 A Model For Outcome Probabilities

Calculation of model-based classification error rate
estimates requires estimation of P(x| M) and P(x| U)
for each of the 2% possible values of x. The probability
density function for x is a mixture of two probability den-
sities given by

f(x) =pPx|M) + (1 —p) P(x| V), (5

where p is the probability that a record pair chosen at
random is a true match. The outcome probabilities depend
on the frequency distributions of identifiers for entities
represented on files A and B, as well as the probabilities
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that errors are introduced when identifiers are recorded on
the files. Fellegi and Sunter (1969, pp. 1192-1194) describe
a method of estimating agreement probabilities involving
their definition in terms of frequency distributions and error
probabilities. They recommend use of the method when
prior information is available.

In the present paper, we consider situations in which
the data on files A and B and the outcome vectors x/,
J = 1,2, ..., N,represent the only information available
for estimation of outcome probabilities. A loglinear structure
for the outcome probabilities is the most general parame-
terization. The saturated loglinear model for outcome
probabilities for true matches is

log(P(x| M)) = M(0) + M(1),, + M(2),, + ...
+ M(K)yp + M(1) M(2)y 1y + ..
+ MK — 1) M(K) e g + - -
+ M) MQ2) ... M(K)yp, s (6

with the usual restrictions

Y MWy, =0, J=1,2,...,K,
XJ

Y MUDM(DL)y, o, = Y MUDM(D)xy vy, = 05
le X.Iz

VJI,Jz, etc.,

as well as the restriction

Y Pix| M) = 1.

The saturated model for P(x| U) is analogous.

If saturated loglinear models for P(x | M) and P(x| U)
are employed, the density function includes 25! — 1
unknown parameters. It is not possible to identify all these
parameters when no auxiliary information is available. In
order to obtain a model that can be identified and to
simplify the estimation problem, the assumption that the
outcomes of comparisons for different data fields are
independent is often employed. Under the assumption of
independence, we denote the probabilities of agreement
among record pairs that are true matches and true non-
matches, respectively, by

mg=Plxy=1|M), k=12,...,K,

up = P(x,=1|0), k=12,...,K.
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Outcome probabilities can be written as

K
Px| M) =TT mix (1 — my =%,
k=1

K
P(x| U) = I wi (1 — ',
k=1

This modelinvolves 2 - K + 1unknown parameters,
namely (m, u, p), where m = (my, m,, ..., my),
u = (u;, Uy, ..., uy). There are, of course, a number of
intermediate models between the saturated model and the
independence model. Methods that can be used to estimate
the independence model are described in Section 3. Esti-
mation of intermediate models is discussed in Section 4.

3. ESTIMATION UNDER INDEPENDENCE
ASSUMPTION

3.1 Method of Moments

A methods of moments estimator of P(x| M) and
P(x | U) can be employed in the case of independence. The
estimator is based on a systemof 2 - K + 1 equations that
provide expressions for functionally independent moments
of x in terms of the parameters. The equations are

(i1

k=i

K K
:.DNH my + (1 —P)NH Uy,

k=i kZi

i1=1,2,...,K

E(x;)) =pNm;,+ (1 —p)Nu;,, i=12,..,K,

M

K K K
E(ka> =pNH m + (1 —p)NH U
k=1 k=1

k=1

To obtain estimates of the parameters using the method
of moments, it is necessary to solve the equations after
expectations have been replaced by averages calculated
using record pairs in C. The equation system for K = 3
was given by Fellegi and Sunter, who also derived a closed
form solution that exists if some mild conditions are
satisfied. Their paper included a word of caution concerning
use of the method in the case of departures from independ-
ence. For K > 3, a closed form solution is not available
but standard numerical methods can be used. Parameter
estimates obtained using the method of moments are statis-
tically consistent if the independence assumption is true.

3.2 Iterative Method

The iterative method was developed by record linkage
practitioners. Although the method is not based on the
probability distribution of the outcome vector, it does
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make use of the independence assumption. Application of
the iterative method is described by several authors,
including Newcombe (1988). Statistics Canada’s record
linkage software, CANLINK, is set up to facilitate use of
the iterative method.

The method requires initial estimates of the agreement
probabilities for true matches and non-matches. For true
matches, guesses based on previous experience must be
employed. To obtain initial estimates of agreement proba-
bilities among record pairs that are true non-matches it is
typically assumed that these probabilities are equal to the
probabilities of agreement among record pairs chosen at
random, namely that,

u, =P, =1), k=12,...,K.

Suppose that J(k) different values for data field &
appear on file A and/or file B. Denote the frequencies of
these values on file A by fy1, fi2,. - ., Jrsky and denote
the file B frequencies by g4, gx2» - - -» &ksx)- FOr a partic-
ular value one, but not both, of the counts may be zero.
The initial estimate of u is

J(k)
ag = 2 (f4j &) /N. ®)
j=1

Given these probability estimates, initial sets of matches
and non-matches, denoted by M? and U? respectively,
are obtained using a decision rule

jeM® if o > 79,
jeu® if o < 7.
2

Next, frequency counts among record pairs in the sets
M and U? are used as new estimates of agreement
probabilities. These estimates are used to obtain new sets
of matches and non-matches and the iterative process is
continued until consecutive estimates of agreement proba-
bilities are sufficiently close.

In most applications, the assumption that the probability
of agreement among record pairs that are true non-matches
is equal to the probability of agreement among all record
pairs is a good one and iteration does not lead to any
important changes in estimates of non-match agreement
probabilities. However, the first iteration often produces
large changes in agreement probability estimates for true
matches. Typically, there are no substantial changes at the
second iteration.

It should be noted that the statistical properties of the
iterative method are unclear. In practice, performance
of the method will depend on the choice of the initial
thresholds 79, 79. These thresholds are typically chosen
subjectively. The simulations reported in Section 5 provide
information about the effects of various initial thresholds.
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4. RELAXING THE INDEPENDENCE
ASSUMPTION - ESTIMATION
USING ITERATIVE SCALING

Methods of estimation for latent variable models can
be used to estimate agreement probabilities when the
dependence between outcomes of comparisons for different
matching fields is parameterized in terms of loglinear
effects. Winkler (1989) and Thibaudeau (1989) have
estimated agreement probabilities using loglinear models
including all interaction terms up to third or fourth order
to parameterize dependencies. The formulation presented
here facilitates use of loglinear models including selected
interactions. Match status can be considered a latent
variable with two levels (true match and true non-match).
Let ¢, , and ¢, , denote the numbers of true non-matches
and true matcHes, respectively, with outcome vector x in
arecord linkage application involving K matching variables.
These counts are, of course, unobservable since the value
of the latent variable for each record pair is unknown.
Instead, ¢, = ¢g, + cj 1S observed.

Using the parefmeterizétion of dependence in terms of
loglinear effects and a saturated model for true matches,
we can write

log(ci o/ (Np)) = M(0) + M(1),, + M(2),, + ...
+ M(K) g + MODMQ2),, 0 + - .-
+ MK = DM(K)yp_ e + -

+ M(HMQ2) ... M(K)y o, .. xpe0
with the usual restrictions. A similar expression for true
non-matches is available. The latent variable model corre-
sponding to these saturated loglinear models is

log(cs /wy) = G(0) + Z; + Gl + ...

+ G(K)y + ZG(1)gy + .o + ZG(K)g

+ .4+ GG G (K)o
+ ZG()G(2) ... G(K)syy, . xg

where the index s has value zero for true non-matches and
one for true matches, wy, = (1 — p)Nand w;, = pN. The
parameters are analogous to the parameters of a saturated
loglinear model for a contingency table of dimension
2X+1 The usual restrictions apply. For example, the term
ZG (1), represents the interaction of the latent variable
and the first matching variable and

E ZG(1)sy, = Z ZG(1);,, = 0.

X1
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This model conforms to the general latent variable
model of Haberman (1979, p. 561). Additional restrictions
must be imposed to identify and estimate the parameters.
For simplicity, we will consider only hierarchical models.
In addition, we restrict attention to models that allow all
non-zero effects to interact with the latent variable.

In subsequent discussion we will denote latent variable
models using symbols G(1), G(2), ..., loglinear models
for true matches using M (1), M(2), ... and loglinear
models for true non-matches using U(1), U(2), ... .
In the case of four matching variables, for example, the
model G(1)G(2), G(3), G(4) is alatent variable model
including a general level term, main effects for all four
matching variables and a term for the interaction of mat-
ching variables one and two, as well as a main effects term
for the latent variable (the interaction of the general level
term and the latent variable), terms for the interaction of
each matching variable and the latent variable and a term
for the interaction of matching variables one and two and
the latent variable. The model includes 12 parameters that
must be estimated. The number of parameters that must
be estimated in one of the latent variable models considered
here is twice the number of parameters in the corresponding
loglinear model.

The iterative scaling method of Haberman (1976) can
be used to estimate latent variable models. The Haberman
estimation method operates by raking tables that contain
estimated counts for each outcome among true matches
and true non-matches. Denote the estimated counts for
outcome vector x after i iterations of the Haberman
algorithm by C} , and Cj , for true matches and true non-
matches, respectively. Starting values € , and C§ , can
be constructed using estimates of agreemen_t probabilities
and the proportion of true matches obtained under the
independence assumption. Each iteration of the algorithm
involves a series of raking operations on the current table
for true matches and the analogous rakes on the current
table for true non-matches. Using the notation for hierar-
chical models introduced above, a set a raking operations
is performed for each of the interaction terms that define
the model. For four matching variables and the model
G(1)G(2), G(3)G(4), two sets of raking operations are
performed - one for the G(1)G(2) interaction and a
second for the G(3)G(4) interaction. For each iteraction,
one raking operation is performed for every level of the
corresponding classification variable. Let S, denote the
set of outcome vectors at level / of term g. The raking oper-
ation on the table of true matches at iteration i for level
[ of term g involves computation of

— ai—11cai—1 ai—1
Yi.x = C)_(Cl,)_( /(Cl,)j + CO,,X ),

Al a1 ai—1
Clx = Cix Yix Cix» VY XESy.
X€Sg/
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The algorithm is terminated when changes between
estimated counts for consecutive iterations are smaller
than a given tolerance.

Haberman (1976) notes that the iterative scaling algo-
rithm may converge to a local maximum of the likelihood
function rather than to the maximum likelihood estimate.
Experiments with different starting values using data sets
employed in the evaluation reported in Section 5 did not
yield any examples of this problem.

5. COMPARISON OF ESTIMATION
METHODS - SYNTHETIC DATA

In this section, the results of comparisons of the estima-
tion methods described in Section 3 and Section 4 are
presented. The comparisons involved application of each
approach to a series of synthetic data sets generated using
Monte Carlo methods.

Synthetic data records containing four personal iden-
tifiers (family name, middle initial, given name, date of
birth) were employed. Information on possible values of
each identifier, as well as their relative frequencies, was
taken from the Canadian Mortality Data Base for 1988.
This database, which is frequently used in health applica-
tions of record linkage, contains a separate record for each
individual death.

The independence assumption was violated among true
matches in each synthetic data set. Information on the fre-
quency of outcome vectors for true matches obtained from
various record linkage projects conducted by the Canadian
Center for Health Information at Statistics Canada was
used during data generation. Most of the projects involved
matching a cohort file to the Canadian Mortality Data
Base. The frequency of each outcome vector among the
true matches is shown in Table 1. The dependence in these
data is clear. Although approximately 88.3% of the true
matches agree on given name, the probability of agreement
on given name given disagreement on middle initial and
agreement on family name and birth year is only
381/1366 - about 27.9%. The value of the likelihood ratio
test statistic for the independence hypothesis is 3604. This
value is very extreme relative to the chi-square reference
distribution with 10 degrees of freedom. (Note that one
degree of freedom is lost due to the zero count for the cell
(1,0,0,0).)

For each synthetic data set, file A records were generated
by selecting identifiers according to relative frequencies in
the 1988 Canadian Mortality Data Base. In order to simplify
the data generation process, the choice of family names
was restricted to the 100 most common non-franccphone
family names and the 100 most common francophone
family names found on the 1988 file. The choice of given
name was restricted to the 50 most common francophone
given names and the 50 most common non-francophone
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given names. All name choices excluded typographical
variations. All middle initials and birth years found on the
1988 file were considered. Records with anglophone given
names were more likely to receive an anglophone family
name than records with francophone given names (reflec-
ting the distribution of names in the Canadian population).
Otherwise, identifiers were selected independently.

Table 1

Outcome Frequencies, Set of True
Matches, Synthetic Data

Outcome by Identifier:

0= Disagreement, 1 = Agreement Frequency
Given Mif{dle Family  Birth Count Percent-
Name Initial Name Year age
0 0 0 0 7 0.03
0 0 0 1 33 0.12
0 0 1 0 125 0.45
0 0 1 i 985 3.54
0 1 0 0 S 0.02
0 1 0 1 39 0.14
0 1 1 0 202 0.73
0 1 1 I 1,848 6.65
1 0 0 0 0 0.0
1 0 0 1 13 0.05
1 0 1 0 50 0.18
1 0 1 1 381 1.37
1 1 0 0 44 0.16
1 1 0 1 451 1.62
1 1 1 0 1,751 6.30
1 1 1 1 21,860 78.65
Total 27,794 100

The starting point for file B was an exact copy of file A.
Each file B record was a true match with exactly one file A
record. To introduce dependence among true matches, an
outcome vector was drawn from the frequency distribution
in Table 1 for each file B record. Identifiers corresponding
to zeroes in the outcome vector were re-selected. Conse-
quently, the set of outcome vectors for true matches was
a sample from the Table 1 distribution. The synthetic data
sets also included mild departures from the independence
assumption for true non-matches since the selection of
given and family names was not completely independent.

Each set of simulation results reported subsequently is
based on 50 Monte Carlo trials. Each trial involved genera-
tion of files A and B of size 500, estimation of m and u,
determination of thresholds corresponding to various
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model-based classification error rate estimates and calcula-
tion of actual error rates corresponding to the thresholds.
The same series of 50 synthetic data sets was used for each
set of simulations. Note that the set C contains 250,000
record pairs including 249,500 true non-matches for each
Monte Carlo trial. In order to reduce computing time
required by the simulations, only 49,500 true non-matches
were used for each trial. (A small scale test was conducted
to verify that reducing the number of true non-matches
had a negligible effect on the estimated agreement proba-
bilities.) True non-matches were removed from C by dividing
files A and B into five corresponding blocks of size 100
and excluding record pairs involving records from blocks
that did not correspond.

The method of moments equation system was solved
using a variation of Newton’s method that is described in
detail in Moré et al. (1980). Computer code from IMSL
(1987) was employed. Agreement probabilities of 0.9 for
true matches and 0.1 for true non-matches for all matching
fields were used as starting values for the solution of the
equation system. The method did not appear sensitive to
starting values.

The properties of the iterative method depend on the
definitions of the initial sets of matches and non-matches,
MPand U°. Recall that, given initial probabilities, record
pairs are classified according to

jEMO it o > T?,
jeu° if o < 79.
When the iterative method was implemented for the

simulations reported here, 79 was set equal to 79. For each
Monte Carlo trial, 7¥ was determined such that

P(jeU |« > 1) + v - P(jeU | o/ = 79) = p°,
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for some y€[0,1), where the estimated probabilities are
based on the initial iterative estimates of 4. Record pairs
with weight 79 were classified in M® with probability .
That is, the initial set of matches used by the iterative
method was chosen to correspond to an estimated classifi-
cation error rate of u° for true non-matches. Starting
values for my, k = 1, 2, ..., 4, were set to 0.9.

The zero count in Table 1 (agreement on given name,
disagreement on all other identifiers) was treated as a
structural zero during data generation. Among loglinear
models involving no more than six parameters the model
that gives the best fit to the Table 1 data is M(1)M(2),
M(3), M(4). This model, involving dependence for out-
comes of comparisons for given name and middle initial,
does not fit particularly well. The likelihood ratio test
statistic for lack of fit is 57.95 — an extreme value relative
to the chi-square reference distribution with 9 degrees of
freedom. The latent variable model G(1)G(2), G(3),
G(4) was estimated for each synthetic data set using
iterative scaling. This model fit the synthetic data sets
somewhat better than the model M (1)M(2), M(3), M(4)
fit the true match data. The largest lack of fit test statistic
among the fifty synthetic data sets was 25.03 and the
model was rejected only ten times at the 5% level of
significance.

Auverages of classification error rate estimates obtained
using the synthetic data sets and the corresponding Monte
Carlo standard errors are reported in Table 2 for true non-
matches and Table 3 for true matches. After multiplica-
tion by 99, the error rates for true non-matches represent
numbers of misclassified true non-matches divided by
numbers of true matches. Results are given for the method
of moments and iterative scaling, as well as the iterative
method with x® = 0.0000625, 0.00025 and 0.001. The
biases in estimated error rates for true non-matches are
generally small. The iterative method with x° = 0.001

Table 2

Classification Error Rates, True Non-matches, Synthetic Data
(Monte Carlo Standard Errors in Parentheses)

Actual Rate (x 99)

Estimated Rate

(x 99) Method of Iter. Method Iter. Method Iter. Method Iter.
Moments 1% = 0.0000625 w0 = 0.00025 w0 = 0.001 Scaling
0.02 0.0188 0.0208 0.0208 0.0207 0.0195
(0.0008) (0.0008) (0.001) (0.001) (0.001)
0.04 0.0381 0.0408 0.0407 0.0405 0.0397
(0.001) (0.0013) (0.0016) (0.0016) (0.0016)

0.06 0.057 0.0626 0.0615 0.0602 0.059
(0.0012) (0.0015) (0.0018) (0.0019) (0.0018)
0.08 0.076 0.0855 0.0838 0.0804 0.0785
(0.0015) (0.0017) (0.0019) (0.0022) (0.0019)
0.10 0.095 0.1086 0.1061 0.1007 0.0978
(0.0019) (0.0021) (0.0022) (0.0026) (0.0021)
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Table 3

Classification Error Rates, True Matches, Synthetic Data
(Monte Carlo Standard Errors in Parentheses)

Actual Rate

Estimated Rate

Method of Iter. Method Iter. Method Iter. Method Iter.
Moments w0 = 0.0000625 w0 = 0.00025 u0 = 0.001 Scaling
0.02 0.0580 0.1179 0.0507 0.0149 0.025
(0.0013) (0.0041) (0.0014) (0.0008) (0.0012)
0.04 0.0773 0.1362 0.0735 0.0359 0.0455
(0.0014) (0.004) (0.0012) (0.0018) (0.0016)
0.06 0.0966 0.1542 0.0954 0.0660 0.0646
(0.0014) (0.0038) (0.0012) (0.0014) (0.0018)
0.08 0.1159 0.1722 0.1165 0.0866 0.0841
(0.0014) (0.0036) (0.0012) (0.0017) (0.0019)
0.10 0.1348 0.1904 0.1319 0.1025 0.1043
(0.0014) (0.0035) (0.0014) (0.002) (0.002)

provides the best estimates, followed by iterative scaling.
For true matches the performance of the iterative method
is very sensitive to the choice of 1°. Although the iterative
method performs well for u° = 0.001, the biases for
1% = 0.0000625 and x° = 0.00025 are substantial. Esti-
mates of classification error rates for true matches obtained
using the method of moments also include large biases.
Biases in estimates based on iterative scaling are relatively
small.

Table 4

Classification Error Rates, True Non-matches,
Modified Synthetic Data
(Monte Carlo Standard Errors in Parentheses)

Actual Rate (x 99)

Estimated Rate

(x 99) Method of Iter.
Moments Scaling
0.02 0.0189 0.0194
(0.0008) (0.001)
0.04 0.0385 0.0396
(0.0011) (0.0016)
0.06 0.0577 0.0589
(0.0013) (0.0019)
0.08 0.0767 0.0785
(0.0016) (0.002)
0.10 0.0957 0.0978
(0.002) (0.0021)

The information in Tables 4 and 5 is based on a series
of synthetic data sets generated using a modified version
of Table 1. Expected values of Table 1 cell counts under
the model M (1)M(2), M(3), M(4) were used for data
generation. The biases in model-based classification error

rate estimates obtained using the method of moments are
greatly reduced using the latent variable model G(1)G(2),
G (3), G(4) estimated using iterative scaling, particularly
for true matches.

Table 5

Classification Error Rates, True Matches,
Modified Synthetic Data
(Monte Carlo Standard Errors in Parentheses)

Actual Rate

Estimated Rate

Method of lter.
Moments Scaling
0.02 0.0553 0.0208
(0.0014) (0.0011)
0.04 0.0747 0.0415
(0.0014) (0.0016)
0.06 0.094 0.0608
(0.0014) (0.0018)
0.08 0.1134 0.0805
(0.0014) (0.002)
0.10 0.1325 0.1007
(0.0015) (0.002)

6. COMPARISON OF ESTIMATION
METHODS - REAL DATA

Results of comparisons of the three estimation methods
using data from a record linkage application are presented
in this section. Two data files used in empirical work
reported by Fair and Lalonde (1987) were employed. The
first file contained information on Ontario miners
obtained from the Workmen’s Compensation Board.
The second file included information from the Canadian
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Mortality Data Base (CMDB) for individual deaths during
the period 1964 to 1977 inclusive. The miners’ file included
only those records with a valid social insurance number.
The second file contained records that had survived an
initial comparison exercise designed to eliminate records
with no similarity to any of the records on the miners’ file.
The vital status of each miner at the end of 1977 had been
classified as ““‘confirmed dead”’, ‘‘confirmed alive’’ or ‘‘lost
to follow-up’’ based on a previous linkage, combined with
thorough follow-up procedures, including manual review.
Records on the miners’ file for individuals ‘‘confirmed
dead’’ included the CMDB death registration number.
More information on the construction of the files and the
procedures used to determine true link status can be found
in Fair and Lalonde.

Four identifiers - given name, NYSIIS code of mother’s
maiden name, day of birth and birth month - were chosen
as matching fields for the comparison. Records on the
miners’ file with vital status ‘‘lost to follow-up’’ were
eliminated. After records with missing values for at least
one matching field or for birth year were also removed,
file A (based on the miners’ file) contained 45,638 records
and file B (based on the CMDB) included 24,597 records.
Restricting comparisons of the two files to pairs of records
with the same NYSIIS representation of family name and
birth years differing by at most one, there were 26,500 true
non-matches and 2063 true matches.

Frequencies of outcomes among true matches and true
non-matches are shown in Table 6. All loglinear models
corresponding to a non-saturated latent variable model
(that is, all models with fewer than eight parameters) are
rejected by the frequency data for true non-matches at a
very low level of significance. Among models with fewer
than eight parameters the model U(1), U(2)U(4),
U(3)U(4) corresponds to the lowest likelihood ratio
test statistic for lack of fit — 35.29. The model M(1),
M(2YM(4), M(3)M(4) provides an adequate fit to the
true match data (likelihood ratio test statistic of 10.29).

Agreement probability estimates were computed using
the method of moments, the iterative method and iterative
scaling using the latent variable model G(1), G(2)G(4),
G(3)G(4). The likelihood ratio test statistic for the inde-
pendence model corresponding to the method of moments
estimator is 108 (six degrees of freedom). The independ-
ence model is rejected by the data at a very low significance
level. In contrast, the likelihood ratio test statistic for the
latent variable model G(1), G(2)G(4),G(3)G(4) is 1.44
(two degrees of freedom), suggesting an adequate fit.
Model-based estimates of classification error rates corres-
ponding to each set of probability estimates were calculated
for various thresholds. Actual classification error rates are
compared to model-based estimates for true non-matches
in Table 7 and true matches in Table 8. The error rates for
true non-matches have been rescaled so that the number
of true matches is in the denominator.
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Table 6
Outcome Frequencies, Real Data

Outcome by Identifier:

0 = Disagreement, 1= Agreement Count
) NYSIIS of . True
Name Maden Bigh Month  Matches NOT
Name Matches
0 0 0 0 4 22,100
0 0 0 1 3 888
0 0 1 0 11 2,322
0 0 1 1 128 211
0 1 0 0 3 199
0 1 0 1 7 19
0 1 1 0 27 27
0 1 1 1 242 13
1 0 0 0 9 576
1 0 0 1 10 32
1 0 1 0 52 94
1 0 1 1 392 4
1 1 0 0 27 13
1 1 0 1 32 1
1 1 1 0 115 0
1 1 1 1 1,001 1
Total 2,063 26,500

Model-based classification error rate estimates obtained
using the iterative method are very inaccurate, particularly
for true non-matches, regardless of the value of ,LLO. Error
rate estimates obtained using iterative scaling are slightly
less accurate than estimates based on the method of
moments for true matches. However, they are con-
siderably more accurate than method of moments
estimates for true non-matches.

Some words of caution are necessary. Even though the
model U(1), U(2)U(4), U(3)U(4) does not adequately
describe the dependencies among true non-matches, the
iterative scaling algorithm obtained a good fit using an
estimate of the proportion of matched records (0.0747)
that differs somewhat from the true value (0.0722). A
similar fit can also be obtained using the model
G(1)YG(2),G(1)YG(3), G(4) and an estimate of 0.077 for
the proportion of matches. Error rate estimates based on
the model G(1)G(2), G(1)G(3), G(4) are no better than
estimates obtained using the method of moments.
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Table 7
Classification Error Rates, True Non-matches, Real Data

Actual Rate (x 12.84)

Estimated Rate

(x 12.84) Method of Iter. Method Iter. Method Iter. Method Iter.
Moments 10 = 0.0000625 19 = 0.00025 w0 = 0.001 Scaling
0.02 0.0368 1.311 0.1859 0.186 0.0339
0.04 0.0796 1.314 0.1888 0.193 0.0649
0.06 0.1224 1.317 0.1917 0.1967 0.0684
0.08 0.1573 1.323 0.1990 0.1994 0.1106
0.10 0.1863 1.333 0.60 0.4066 0.1282

Table 8
Classification Error Rates, True Matches, Real Data
Actual Rate

Estimated Rate Method of Iter. Method Iter. Method Iter. Method Iter.
Moments w0 = 0.0000625 u0 = 0.00025 w9 = 0.001 Scaling
0.02 0.0166 0.0141 0.0193 0.0225 0.0105
0.04 0.0318 0.0264 0.029 0.0278 0.0263
0.06 0.0598 0.0383 0.0472 0.0326 0.0529
0.08 0.0782 0.0416 0.1372 0.0488 0.0784
0.10 0.0966 0.045 0.1393 0.1371 0.0958

7. CONCLUSIONS

In this paper, the issue of classification error rate
estimation for record linkage has been discussed. The
Fellegi-Sunter framework provides for the calculation of
classification error rate estimates using estimates of agree-
ment probabilities. These model-based estimates typically
have poor properties in practice. It has been demonstrated
that their properties can be improved through careful
estimation of agreement probabilities. Three estimation
methods have been evaluated using synthetic data as well
as information from'a real application.

For two of the three methods, the assumption that
outcomes of comparisons for different data fields are
independent was employed. This assumption was not valid
for either the synthetic data or the real data. The synthetic
data included strong dependencies for true matches and
minor dependencies for true non-matches. Dependencies
in the real data were particularly strong for true non-
matches. Classification error rate estimates obtained using
the method of moments, which relies on the assumption
of independence, included substantial bias for synthetic
data and were relatively inaccurate for real data. The
magnitude of the bias in classification error rate estimates
for synthetic data obtained using the iterative method

depended on the definition of an initial set of matches.
Although some definitions of the initial set of matches led
to relatively small biases, others produced estimates with
biases much larger than those obtained using the alter-
native methods. For the real data, all the definitions of the
initial set of matches considered led to very inaccurate
error rate estimates. There are no mathematical rules
available for the choice of an initial set of matches for
the iterative method. The results in this paper provide no
evidence to recommend its use.

The third method relies on a parameterization of
dependencies between outcomes of comparisons for dif-
ferent data fields using loglinear effects. Under this
parameterization, estimates of agreement probabilities
that do not rely on the independence assumption can be
obtained through use of the iterative scaling method to
estimate the parameters of a latent variable model. For the
synthetic data sets with lack of independence, model-based
classification error rate estimates obtained using iterative
scaling included much smaller biases than estimates based
on the independence assumption. Although the latent
variable model fit most synthetic data sets better than a
model based on the independence assumption, it sometimes
exhibited significant lack of fit. When the synthetic data
was modified to improve the fit of the latent variable
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model, there was no evidence of bias in model-based
classification error rate estimates. The real data included
important departures from independence for both true
matches and true non-matches. Model-based error rate
estimates obtained using iterative scaling were slightly less
accurate than estimates based on the method of moments
for true matches and considerably more accurate for true
non-matches.

The results reported here indicate that properties of
model-based classification error rates estimates can be
improved using an appropriate estimator of agreement
probabilities. Latent variable models and iterative scaling
provide a method of incorporating dependencies between
outcomes of comparisons for different data fields during
estimation of agreement probabilities.
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