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The Treatment of Missing Survey Data
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ABSTRACT

Missing survey data occur because of total nonresponse and item nonresponse. The standard way to
attempt to compensate for total nonresponse is by some form of weighting adjustment, whereas item
nonresponses are handled by some form of imputation. This paper reviews methods of weighting ad-
justment and imputation and discusses their properties.
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1. INTRODUCTION

Surveys typically collect responses to a large number of items for each sampled element.
The problem of missing data occurs when some or all of the responses are not collected for
a sampled element or when some responses are deleted because they fail to satisfy edit con-
straints. It is common practice to distinguish betweén total (or unit) nonresponse, when none
of the survey responses are available for a sampled element, and item nonresponse, when
some but not all of the responses are available. Total nonresponse arises because of refusals,
inability to participate, not-at-homes, and untraced elements. Item nonresponse arises because
of item refusals, ‘‘don’t knows’’, omissions and answers deleted in editing.

This paper reviews the general-purpose methods available for handling missing survey data.
The distinction between total and item nonresponse is useful here since different adjustment
methods are used for these two cases. In general the only information available about total
nonrespondents is that on the sampling frame from which the sample was selected (e.g., the
strata and PSUs in which they are located). The important aspects of this information can
usually be readily incorporated into weighting adjustments that attempt to compensate for
the missing data. Hence as a rule weighting adjustments are used for total nonresponse.
Methods for making weighting adjustments are reviewed in Section 2.

In the case of item nonresponse, however, a great deal of additional information is available
for the elements involved: not only the information from the sampling frame, but also their
responses for other survey items. In order to retain all survey responses for elements with
some item nonresponses, the usual adjustment procedure produces analysis records that in-
corporate the actual responses to items for which the answers were acceptable and imputed
responses for other items. Imputation methods for assigning answers for missing responses
are reviewed in Section 3.

In general the choice between weighting adjustments and imputation for handling miss-
ing survey data is fairly clearcut; there are cases, however, when the choice is not so clear.
These are cases of what may be termed partial nonresponse, when some data are collected
for a sampled element but a substantial amount of data is missing. Partial nonresponse can
arise, for instance, when a respondent terminates an interview prematurely, when data are
not obtained for one or more members of an otherwise cooperating household (for household
level analysis), or when a sampled individual provides data for some but not all waves of
a panel survey. Discussions of the choice between weighting and imputation to compensate
for wave nonresponse in a panel survey are given by Cox and Cohen (1985) and Kalton (1986).

I Graham Kalton, Survey Research Center, University of Michigan, Ann Arbor, Michigan, 48106-1248 and Daniel
Kasprzyk, Population Division, U.S. Bureau of the Census, Washington, D.C., 20233. The authors would like
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Although weighting adjustments and imputation are treated as separate approaches in
the discussion below, they are in fact closely related. The relationship and differences bet-
ween the two approaches are briefly discussed in Section 4, which also mentions some alter-
native ways of handling missing survey data.

2. WEIGHTING ADJUSTMENTS

Weighting adjustments are primarily used to compensate for total nonresponse. The essence
of all weighting adjustment procedures is to increase the weights of specified respondents
so that they represent the nonrespondents. The procedures require auxiliary information on
either the nonrespondents or the total population. The following four types of weighting
adjustments are briefly reviewed below: population weighting adjustments, sample weighting
adjustments, raking ratio adjustments, and weights based on response probabilities. More
details are provided in Kalton (1983).

2.1 Population Weighting Adjustments

The auxiliary information used in making population weighting adjustments is the distribu-
tion of the population over one or more variables, such as the population distribution by
age, sex and race available from standard population estimates. The sample of respondents
is divided into a set of classes, termed here weighting classes, defined by the available aux-
iliary information (e.g., White males aged 15-24, non-White females aged 25-34, etc.). The
weights of all respondents within a weighting class are then adjusted by the same multiplying
factor, with different factors in different classes. The adjustment is carried out in such a
way that the weighted respondent distribution across the weighting classes conforms to the
population distribution.

This type of adjustment is often termed poststratification. That term is avoided here,
however, because although population weighting resembles poststratification, there is an im-
portant difference between the two. Like population weighting, poststratification weights
the sample to make the sample distribution conform to the population distribution across
a set of classes (or strata). However, the standard textbook theory of poststratification is
concerned only with the sampling fluctuations that cause the sample distribution to deviate
from the population distribution, not with the more major deviations that can arise from
varying response rates across the classes. Poststratification adjustments are more like a fine
tuning of the sample, resulting generally in only small variations in the weights across strata.
In consequence, provided that the strata are not small, poststratification leads to lower stan-
dard errors for the survey estimates. In contrast, population weighting adjustments may in-
volve more major adjustments and result in higher standard errors.

Population weighting adjustments attempt to reduce the bias created by nonresponse and
coverage errors. Consider the estimation of a population mean Y from a sample in which
the elements are selected with equal probability. Suppose that the population is divided into
a set of weighting classes, with a proportion W, of elements in class 4. Assume that
respondents always respond and that nonrespondents never do. Let R, and M), be the pro-
portions of respondents and nonrespondents respectively in class #, and let R = LW, R, be
the overall response rate. Then, following Thomsen (1973), the bias of the unadjusted respon-
dent mean () can be expressed as

B(P) =R 'YW (¥ — )R, — B) + Y WiMy(Y — Tp) = A+ B (D)
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where Y, and Y, are the means for respondents and nonrespondents in class 4 respective-
ly, and ¥, is the population mean for the respondents. The use of the population weighting
adjustment leads to the weighted sample mean, Jp = LW}y, where ¥, is the respondent
sample mean in class 4. The bias of Jp is simply the second term in B(p), that is,
B(y,) = B.

If A and B are of the same sign, the population weighting adjustment reduces the ab-
solute bias in the estimate of ¥ by |A|. If ¥,, = Y,,, as occurs in expectation when the
nonrespondents are missing at random within the weighting classes, then B = 0. In this case,
the population weighting adjustment eliminates the bias. The term A4 is a covariance-type
term between the class response rates and the class respondent means. It is zero if either
the response rates or the respondent means do not vary between classes. In either of these
cases, the population weighting adjustment has no effect on the bias of the estimator. It
may be noted that population weighting adjustments may increase the absolute bias of the
estimate of Y. This will occur when A4 and B are of opposite signs and | 4] < 2|B]|.

Population weighting adjustments require external data on the population distributions
for the variables to be used. Care is needed to ensure that the data on which the population
distributions are based are exactly comparable with the survey data; otherwise, inappropriate
weights will result. Since the procedure weights up to population distributions, it does more
than just attempt to compensate for nonresponse. It also compensates for coverage errors
and makes a poststratification adjustment.

2.2 Sample Weighting Adjustments

As with population weighting adjustments, with sample weighting adjustments the sam-
ple is divided into weighting classes; varying weights are then assigned to these classes in
an attempt to reduce the nonresponse bias. The essential difference between the two pro-
cedures lies in the auxiliary information used. As described above, population weighting ad-
justments are based on externally obtained population distributions. No data are needed for
the sample nonrespondents. In contrast, sample weighting adjustments employ only data
internal to the sample and require information about the nonrespondents.

With sample weighting adjustments, the nonresponse adjustment weights for the weighting
classes are made proportional to the inverses of the response rates in the classes. In order
to compute these response rates, the numbers of respondents and nonrespondents in the classes
must be determined. It is therefore necessary to know to which class each respondent and
nonrespondent belongs. Since typically very little information about the nonrespondents is
available, the choice of weighting class is usually severely restricted. It is often limited to
general sample design variables (e.g., PSUs and strata), characteristics of those variables
(e.g., urban/rural, geographical region), and sometimes some additional variables available
on the sampling frame. On occasion it may also be possible to collect information on one
or two variables for the nonrespondents, for instance by interviewer observation.

As population weighting adjustments resemble poststratification, so sample weighting ad-
Justments resemble two-phase sampling. The first phase sample is the total sample of
respondents and nonrespondents; the second phase sample is the subsample of respondents,
selected with different sampling fractions (response rates) in different strata (weighting classes).
The sample weighted mean can be represented by y; = Ew,p,,, where w,, is the proportion
of the total sample in weighting class 4. Assuming no coverage errors, E(w,) = W,, the
population proportion in class &, as used in the population weighted estimator
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Jp = LW, ¥y The bias of j; is the same as that of y,, namely B(y,) = B as given in equa-
tion (1); hence the effect of the sample weighting adjustment on the bias of the survey estimate
is the same as that of the population weighting adjustment. Since sample weighting ad-
justments use only data for the sample, they do not compensate for coverage errors (unlike
population weighting adjustments).

Population and sample weighting adjustments have different data requirements, and hence
address different potential sources of bias. In practice the two forms of adjustment are used
in combination. Generally sample weighting adjustments are applied first, and then popula-
tion weighting adjustments are applied afterwards. A common approach is initially to deter-
mine the sample weights needed to compensate for unequal selection probabilities, next to
revise these weights to compensate for unequal response rates in different sample weighting
classes (e.g., urban/rural classes within geographical regions), and finally to revise the weights
again to make the weighted sample distribution for certain characteristics (e.g., age/sex) con-
form to the known population distribution for those characteristics. The use of this approach
in the U.S. Current Population Survey is described by Bailar et al. (1978).

As with population weighting adjustments, the aim of sample weighting adjustments is
to reduce the bias that nonresponse may cause in survey estimates. An effect of sample
weighting adjustments is, however, to increase the variances of the survey estimates. There
is therefore a trade-off to be made between bias reduction and variance increase.

An indication of the amount of increase in variance from weighting can be obtained by
considering the situation where the element variances within the weighting classes are all the
same and the variances between the class means are negligible compared to the within-class
variances. In this situation, the loss of precision from weighting is approximately the same
as that arising from the use of disproportionate stratified sampling when proportionate
stratified sampling is optimum; Kish (1965, Section 11.7C; 1976) discusses this latter case.

Under the above conditions, weighting increases the variance of a sample mean by ap-
proximately L = (EW,k;) (EW}/k,), where W), is the proportion of the populatlon and
k, is the weight for class 4. An alternative expression for L is (Lny) (Znyk3) / (Engky)?,
where ny, is the sample size in class . The factor L becomes large when the variance of the
weights is large.

A large variance in the weights can arise from segmenting the sample into many weighting
classes with only a few sampled elements in each. When the weighting classes are small, their
response rates are unstable, and this gives rise to a large variation in the weights. To avoid
this effect, it is common practice to limit the extent to which the sample is segmented. Even
so, there may still be some weighting classes that require large weights. Sometimes these
weighting classes are handled by collapsing them with adjacent ones and sometimes their
weights are cut back to some acceptable maximum value (see Bailar ez al. 1978 and Chap-
man et al. 1986, for examples). These procedures avoid the increase in variance associated
with the use of extreme weights, but they may lead to increased bias; their effect on the bias
is, however, unknown.

In some cases it seems desirable to use several auxiliary variables in forming the weighting
classes for population or sample weighting adjustments. However, if the classes are formed
by taking the full crossclassification of the variables, there will be a large number of weighting
classes. Unless the sample is very large, the sample sizes in the resultant weighting classes
will be small, and the instability in the response rates will lead to a large variance in the weights
and loss of precision in the survey estimates. One way to deal with this problem is to cut
down on the number of classes by collapsing cells, for instance by discarding some of the
auxiliary variables or using coarser classifications. Another way is to base the weights on
a model, as is done in raking ratio weighting discussed below.
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2.3 Raking Ratio Adjustments

When weighting classes are taken to be the cells in the crossclassification of the auxiliary
variables, population weighting adjustments make the joint distribution of the auxiliary
variables in the sample conform to that in the population. Similarly, sample weighting ad-
justments make the joint distribution of the auxiliary variables in the respondent sample con-
form to that in the total sample. As noted above, however, this crossclassification approach
may have the undesirable effect of creating many small, and hence unstable, weighting classes.
Also, it is not always possible to employ this approach with population weighting adjustments:
in many cases the population marginal distributions, and perhaps some bivariate distribu-
tions, of the auxiliary variables are available, but the full joint distribution is unknown.

An alternative approach is to develop weights that make the marginal distributions of
the auxiliary variables in the sample conform to marginal population distributions (with
population weighting) or marginal total sample distributions (with sample weighting), without
ensuring that the full joint distribution conforms. The method of raking ratio estimation,
or raking, may be used to obtain weights that satisfy these conditions. Raking corresponds
to iterative proportional fitting in contingency table analysis (see, for instance, Bishop et
al., 1975).

Consider the use of raking in the simple case of two auxiliary variables. Let W), be the
proportion of the population in the (A, k)-th cell of the crossclassification, and let Wy, be
the proportion assigned to that cell by the raking algorithm. Conditional on the total and
respondent sample sizes in the cells (and assuming all cells have at least one respondent),
the bias of the raking ratio adjusted sample mean y, = ZZWy Py is

B(Fg) = LY WiiMue Tome — Fo) + YY O = Wi Topie = Y. — T + 7,)

where W, = E(Wy,). The first term in this bias corresponds to the bias term B in equa-
tion (1) for the population and sample weighting adjustments. It is zero in expectation if
the cell nonrespondents are random subsets of the cell populations. The second term is zero
if either Wy, = W), or there is no interaction in the ¥, for this classification.

Underlying the raking ratio weighting procedure is a logit model for the cell response rates.
With the model In[Ry,/(1 — Ruy)] = a + By for the response rates in a two-way
classification, Wy, = W,,. Thus, under this model, the second term in B(y,) is zero.

Further discussion of raking ratio weighting is given by Oh and Scheuren (1978a,1978b,
1983). Oh and Scheuren (1978a) also provide a bibliography on raking.

2.4 Weighting with Response Probabilities

Although a number of methods for weighting with response probabilities have been pro-
posed, this approach has not been widely adopted as an adjustment procedure. The basis
of the approach is to assume that all population elements have probabilities (usually required
to be non-zero) of responding to the survey. Some method is used to estimate the response
probabilities for responding elements. These elements are then given nonresponse adjust-
ment weights that are in inverse proportion to their estimated response probabilities.

An early application of this approach is the well-known procedure of Politz and Sim-
mons (1949, 1950). A single (evening) call is made to each selected household, and during
the course of the interview respondents are asked on how many of the previous five evenings
they were at home at about the same time. Their response probabilities are then taken to
be the fraction of the six evenings (including the one of the interview) that they were at home,
and the inverses of these probabilities are used in the analysis. Note that the procedure does
not deal with those who were out on all six evenings and those who refused.
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Another approach for estimating response probabilities is to regress response status (1
for respondents, 0 for nonrespondents) on a set of variables available for both respondents
and nonrespondents, using a logistic or probit regression. The predicted values from the regres-
sion for the respondents are then taken to be their response probabilities, and weights in
inverse proportion to these predicted values are used in the analysis. A special case is when
the predictor variables are dummy variables that identify a set of classes. The predicted
response probabilities are then the class response rates, and the method reduces to a sample
weighting adjustment. The method is most appropriate for situations where a good deal of
information is available for the nonrespondents, as for instance when the nonrespondents
are losses after the first wave of a panel survey. Little and David (1983) discuss the applica-
tion of the method for panel nonresponse. It should be noted that if the regression is highly
predictive of response status, the resultant weights will vary markedly, leading to a substan-
tial loss in the precision of the survey estimates.

Drew and Fuller (1980, 1981) describe an approach for estimating response probabilities
from the number of respondents secured at successive calls. In their model, the population
is divided into classes. Within each class, every element is assumed to have the same response
probability which remains the same at each call. The model also allows for a proportion
of hard-core nonrespondents that is assumed constant across classes. Under these assump-
tions, the response probabilities for each class and the proportion of hard-core nonrespondents
can be estimated, and hence weighting adjustments can be made. Thomsen and Siring (1983)
adopt a similar approach using a more complex model.

Finally, mention should be made of a related approach that compensates for nonresponse
by weighting up difficult-to-interview respondents. Bartholomew (1961), for instance, pro-
posed making only two calls in a survey, and weighting up the respondents at the second
call to represent the nonrespondents. The assumption behind this approach is that the
nonrespondents are like the late respondents. This assumption seems questionable, however,
and empirical evidence from an intensive follow-up study of nonrespondents in the U.S. Cur-
rent Population Survey does not support it (Palmer and Jones 1966; Palmer 1967).

3. IMPUTATION

A wide variety of imputation methods has been developed for assigning values for miss-
ing item responses. The aim here is to provide a brief overview of the methods, the basic
differences between them, and some of the issues involved in imputation. A fuller treatment
is provided by Kalton and Kasprzyk (1982).

Imputation methods can range from simple ad hoc procedures used to ensure complete
records in data entry to sophisticated hot-deck and regression techniques. The following are
some common imputation procedures:

(a) Deductive imputation. Sometimes the missing answer to an item can be deduced with
certainty from the pattern of responses to other items. Edit checks should check for con-
sistericy between responses to related items. When the edit checks constrain a missing
response to only one possible value, deductive imputation can be employed. Deductive
imputation is the ideal form of imputation.

(b) Overall mean imputation. This method assigns the overall respondent mean to all miss-
ing responses.

(¢) Class mean imputation. The total sample is divided into classes according to values of
the auxiliary variables being used for the imputation (comparable to weighting classes).
Within each imputation class the respondent class mean is assigned to all missing responses.
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(d) Random overall imputation. A respondent is chosen at random from the total respon-

dent sample, and the selected respondent’s value is assigned to the nonrespondent. This
method is the simplest form of hot-deck imputation, that is an imputation procedure
in which the value assigned for a missing response is taken from a respondent to the cur-
rent survey.

(e) Random imputation within classes. In this hot-deck method, a respondent is chosen at

®

random within an imputation class, and the selected respondent’s value is assigned to
the nonrespondent.

Sequential hot-deck imputation. The term sequential hot-deck imputation is used here
to describe the procedure used with the labor force items in the U.S. Current Population
Survey (Brooks and Bailar 1978). The procedure starts with a set of imputation classes.
A single value for the item subject to imputation is assigned for each class (perhaps taken
from a previous survey). The records in the survey’s data file are then considered in turn.
If a record has a response for the item in question, its response replaces the value stored
for the imputation class in which it falls. If the record has a missing response, it is assign-
ed the value stored for its imputation class.

The hot-deck method is similar to random imputation within classes. If the order of
the records in the data file were random, the two methods would be equivalent, apart
from the start-up process. The non-random order of the list generally acts to the benefit
of the hot-deck method since it gives a closer match of donors and recipients provided
that the file order creates positive autocorrelation. The benefit is, however, unlikely to
be substantial.

The sequential hot-deck suffers the disadvantage that it may easily make multiple uses
of donors, a feature that leads to a loss of precision in survey estimates. Multiple use
of a donor occurs when, within an imputation class, a record with a missing response
is followed by one or more other records with missing responses. The number of imputa-
tion classes that can be used with the method also has to be limited in order to ensure
that donors are available within each class.

Useful discussions of the sequential hot-deck method are provided by Bailar et al.
(1978), Bailar and Bailar (1978, 1983), Ford (1983), Oh and Scheuren (1980), Oh et a!.
(1980), and Sande (1983).

(g) Hierarchical hot-deck imputation. The above disadvantages of the sequential hot-deck

are avoided in the hierarchical hot-deck method, a form of hot-deck imputation developed
for the items in the March Income Supplement of the Current Population Survey. The
procedure sorts respondents and nonrespondents into a large number of imputation classes
from a detailed categorization of a sizeable set of auxiliary variables. Nonrespondents
are then matched with respondents on a hierarchical basis, in the sense that if a match
cannot be made in the initial imputation class, classes are collapsed and the match is made
at a lower level of detail. Coder (1978) and Welniak and Coder (1980) provide further
details on the hierarchical hot-deck procedure.

(h) Regression imputation. This method uses respondent data to regress the variable for which

@

imputations are required on a set of auxiliary variables. The regression equation is then
used to predict the values for the missing responses. The imputed value may either be
the predicted value, or the predicted value plus some residual. There are several ways
in which the residual may be obtained, as discussed later.

Distance function matching. This hot-deck method assigns a nonrespondent the value
of the ‘‘nearest’” respondent, where ‘‘nearest’’ is defined in terms of a distance function
for the auxiliary variables. Various forms of distance function have been proposed (e.g.,
Sande 1979; Vacek and Ashikago 1980), and the function can be constructed to reduce
the multiple use of donors by incorporating a penalty for each use (Colledge ef al. 1978).



8 Kalton and Kasprzyk: Treatment of Missing Survey Data

Although at first sight these may appear a diverse set of procedures, they can nearly all
be fitted within a single unifying framework. The methods can all be described, at least ap-
* proximately, as special cases of the general regression model

Imi = bpo + Ebrjzmij + i 2

where §,,; is the imputed value for the ith record with a missing y value, z,,; are values reflec-
ting the auxiliary variables for that record, b,, and b,; are the regression coefficients for the
regression of y on x for the respondents, and é,; is a residual chosen according to a specified
scheme for the particular imputation method.

Equation (2) represents the regression imputation method in an obvious way. If the é,,’s
are set at zero, then the imputed value is the predicted value from the regression; otherwise
a residual of some form may be added. The equation also represents class mean imputation
by defining the z;’s to be dummy variables that represent the classes, and setting é,,; = 0.
The regression equation then reduces to §,,; = J,, the class mean. Random imputation
within classes is obtained by adding a residual to the class mean, where the residual is the
deviation from the class mean for one of the respondents. Then $,; = 7., + e, where
e, is the deviation for respondent & in class #; this reduces to $,,; = Y., the value for that
respondent. The sequential and hierarchical hot-deck methods resemble the random within
class method. The overall mean and random overall imputation methods are degenerate cases
of the class mean and random within class methods that use no auxiliary information.

An important consideration in the choice of imputation method is the type of variable
being imputed. All the above methods can be applied routinely with continuous variables,
but some of them are not suitable for use with categorical or discrete variables (such as being
a member of the labor force (1) or not (0), and the number of completed years of educa-
tion). Overall mean, class mean, and regression imputations impute values like 0.7 for being
a member of the labor force (i.e., a 70% chance) and 10.7 for the number of completed
years of education. These values are not feasible for individual respondents, and rounding
them to whole numbers leads to bias. For this reason, these imputation methods do not work
well for categorical and discrete variables. A notable advantage of all hot-deck methods is
that they always give feasible values since the values are taken from respondents.

There are two major distinguishing features of the above imputation methods that deserve
elaboration: whether or not a residual is added and, if one is, the form of the residual; and
whether the auxiliary information is used in dummy variable form to represent classes or
whether it is used straightforwardly in the regression. These features are discussed in the
next two subsections. Other issues arising with the use of imputation are then discussed in
subsequent subsections.

3.1 Choice of Residuals

Imputation methods may be classified as deterministic or stochastic according to whether
the é,/s are set at zero or not. For each deterministic imputation method, there is a
stochastic counterpart. Let 7,,,; be the value imputed by the deterministic method and
Pmis = Pmia + én; be that imputed by the corresponding stochastic method. Then
Es(Pmis) = Pmia» Where E, denotes expectation over the sampling of residuals given the in-
itial sample, provided that E,(é,;) = O (as generally applies).

The choice between a deterministic and the corresponding stochastic imputation method
depends on the form of survey analysis to be conducted. Consider first the estimation of
the population mean of the y-variable using the sample mean of the respondents’ values and
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the nonrespondents’ imputed values. As Kalton and Kasprzyk (1982) show, given that
E>(Piis) = Pmia» it follows that the expectation of the sample mean is the same whether the
deterministic method or the corresponding stochastic method is used. Thus both methods
have the same effect on the bias of the estimate. However, the addition of random residuals
in the stochastic method causes a loss of precision in the sample mean. Although this loss
can be controlled by the choice of a suitable method of sampling residuals (Kalton and Kish
1984), nevertheless some loss in precision occurs. For this reason a deterministic scheme is
preferable for the purpose of estimating the population mean.

Consider now the estimation of the element standard deviation and distribution of the
y-variable. Deterministic imputation methods fare badly for these purposes, since they cause
an attenuation in the standard deviation and they distort the shape of the distribution. This
may be simply illustrated in terms of the class mean imputation method. By assigning the
class mean to all the missing values in a class, the shape of the distribution is clearly distorted
with a series of spikes at the class means. The standard deviation of the distribution is at-
tenuated because the imputed values reflect only the between-class and not the within-class
variance. The appeal of the stochastic imputation methods is that the residual term captures
the within-class (or residual) variance, and hence avoids the attenuation of the element stan-
dard deviation and the distortion of the distribution.

Since some survey analyses are likely to involve the distributions of the variables, stochastic
imputation methods like the hot-deck methods are generally preferred. Once a decision is
made to use a stochastic method, the question of how to choose the residuals arises. If the
standard regression assumptions are accepted, the residuals could be chosen from a normal
distribution with a mean of zero and a variance equal to the residual variance from the respon-
dent regression. However, this places complete reliance on the model. An alternative that
avoids the normality assumption is to choose the residuals randomly from the empirical
distribution of the respondents’ residuals. Another alternative is to select a residual from
a respondent who is a ‘‘close’” match to the nonrespondent, measuring ‘‘close’’ in terms
of similar values on the auxiliary variables. This attractive alternative avoids the assumption
of homoscedasticity and guards against misspecification of the distribution of the residual
term. In the limit, the closest respondent is one who has the same values of all the auxiliary
variables as the nonrespondent. In this case, the nonrespondent is given one of the matched
respondents’ values. This case arises with hot-deck methods, where nonrespondents and
respondents are matched in terms of the auxiliary variables, and nonrespondents are assign-
ed values from matched respondents.

A further consideration in the choice of residuals is to make the imputed values feasible
ones. As noted above, deterministic methods may impute values for categorical and discrete
variables that are not feasible. Some stochastic methods solve this problem through the alloca-
tion of the residuals. In particular, the use of respondents’ residuals with the random within
class and the sequential and hierarchical hot-deck methods ensures that the imputed values
are feasible ones.

3.2 Imputation Class or Regression Imputation

As noted earlier, both imputation class and regression imputation methods fall within the
imputation model given by equation (2). The difference between them lies in the ways in
which they employ the auxiliary variables.

Imputation class methods divide the sample into a set of classes. For this purpose, con-
tinuous auxiliary variables have to be categorized. There is complete flexibility in the way
the classes are formed, and the symmetrical use of the auxiliary variables in different parts
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of the sample is not required. Thus, for instance, in imputing for hourly rate of pay in a
sample of employees, the sample might first be divided into two parts, union members and
nonmembers; then the imputation classes for the members might be formed in terms of age
and occupation whereas those for nonmembers might be formed in terms of sex and industry.
As a rule, the aim is to construct classes of adequate size that explain as much of the variance
in the variable to be imputed as possible. When the classes are formed by a complete
crossclassification of the auxiliary variables, the underlying model contains all main effects
and all interactions for the crossclassification. The limitation of imputation class methods
is that the number of classes formed has to be constructed to ensure that there is some
minimum number of respondents in each class. The hierarchical hot-deck method attempts
to extend the amount of auxiliary data used, but even with this method matches of respondents
and nonrespondents often cannot be made at the finer levels of detail. Coupled with the
use of a random respondent residual within a class, imputation class methods have the valuable
property that imputed values are feasible ones: that is, the imputed values are actual
respondents’ values.

Regression imputation methods have an advantage over imputation class methods in the
number and in the level of detail of the auxiliary variables they can employ. Age can, for
instance, be taken as a continuous variable rather than being categorized into a few classes.
The regression model allows more main effects to be included in the model, but at the price
of fewer interactions. Regression models can, of course, include some interactions, but they
need to be specified. The models can also include polynomial terms and employ transforma-
tions, but again they need to be specified. The regression model has the potential of pro-
viding better predictions for the imputed values, but to achieve this careful modelling is
required. Careful imputation modelling is unrealistic for all the variables in a survey, but
it may be feasible for one or two major ones (and especially so for continuous surveys).
Without careful modelling, there is a serious risk of poor imputations, although as noted
earlier, this risk can be reduced by the allocation of random residuals from *‘close”
respondents.

If a regression imputation assigns the residual from a respondent with exactly the same
values of the auxiliary variables, the imputed value is necessarily a feasible one. If, however,
there is even a small difference between the respondent’s and nonrespondent’s values on the
auxiliary variables, the imputed value may not be feasible. A variant of regression imputa-
tion that avoids this problem, termed predictive mean matching, is described by Little (1986b)
(Little attributes the method to Rubin). With predictive mean matching, the nonrespondent
is matched to the respondent with the closest predicted value. Then, instead of adding the
respondent’s residual to the nonrespondent’s predicted value, the nonrespondent is assigned
the respondent’s value. The method is thus a hot-deck method, and is similar to distance
function matching.

The choice between imputation class and regression imputation methods should in part
depend on the efforts made to develop the regression model. Unless adequate resources are
devoted to the development of a regression model, the imputation class methods may be
safer. The choice should also in part depend on the sample size. With large samples, hot-
deck methods are likely to be able to use enough classes to take advantage of all the major
predictor variables; however, with small samples this may not hold, and regression methods
may have greater potential. David ef al. (1986) describe an interesting study that compares
regression models for imputing wages and salary in the U.S. Current Population Survey with
hierarchical hot-deck imputations. Despite the extensive efforts made to develop the regres-
sion models, the hot-deck imputations were not found to be inferior in this large sample.

3.3 Effect of Imputation on Relationships

Although most of the literature on imputation deals with its effect on univariate statistics
such as means and distributions, a large part of survey analysis is concerned with bivariate
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and multivariate relationships. Here the analysis of relationships can be considered in broad
terms to include crosstabulation, correlation or regression analysis, comparisons of subclass
means or proportions, and any other analysis involving two or more variables. As will be
illustrated below, imputation can have harmful effects on all analyses of relationships, often
attenuating the associations between variables. Discussions of the effects of imputations on
relationships are provided by Santos (1981), Kalton and Kaspryzk (1982) and Little (1986a).

The general nature of the effect of imputation on relationships can be seen by considering
its effect on the estimate of the sample covariance in the simple situation where the y-variable
has missing responses that are missing at random over the population and the x-variable has
no missing data. The sample covariance, Sxy» 18 calculated in the standard way, based on
the actual values for respondents and the imputed values for nonrespondents, as an estimate
of the population covariance S,,. Using the fact that E,($,;;) = F,..q as above, it can be
readily shown that the expected value of s,, under a deterministic imputation method is the
same as that under the corresponding stochastic method.

As Santos (1981) shows, the relative bias of s,, when the mean overall or random overall
imputation methods are used is approximately — M, where M is the nonresponse rate. This
occurs because the imputed y-values are unrelated to their x-values, and hence the cases with
imputed values attenuate the covariance towards zero. This attenuation is decreased in
magnitude by imputation methods that use auxiliary variables. With class mean imputation
or random imputation within classes, the relative bias is approximately —M (Sxy.2/Sx)s
where S, . = EW,S,,, is the average within-class covariance for classes formed by the aux-
iliary variables z, S, is the covariance within class #, and W), is the proportion of the
population in class 4. With predicted regression imputation or regression imputation with
a random residual, both with a single auxiliary variable z, the relative bias is approximately
—MI1 — (pypy./Pry) ], Where p,, is the correlation between u and v.

The disturbing feature of these results is that, unless M is small, Sy, calculated with im-
puted values under any of these imputation methods may be subject to substantial bias even
under the missing at random model. The estimates s,, computed with imputed values ob-
tained under the imputation class and regression methods are unbiased only if the partial
covariance S, ; is zero. In general, there is no reason to assume uncritically that S, , is zero.
However, there is an important case when S,, ; = 0. This occurs when x = z, that is when
x is used as an auxiliary variable in the imputation procedure. In this case, the sample
covariance is unbiased under the missing at random model. This result suggests that if the
relationship between x and y is to form an important part of the survey analysis, x should
be used as an auxiliary variable in imputing for missing y-values.

The above theory assumes that only the y-variable was subject to missing data. In prac-
tice the x-variable will often also be incomplete. If so, the sample covariance may be at-
tenuated because of the imputations for both variables. A special feature occurs when x and
y are both missing for a record. If the two values are imputed separately, the covariance
is attenuated, but if they are imputed jointly, using the same respondent as the donor of
both values, the covariance structure is retained. This suggests that when a record has several
missing related values, they should be taken from the same donor. Coder (1978) describes
the use of joint imputation from the same donor in the March Income Supplement of the
Current Population Survey.

As an illustration of how the above arguments about the attenuation of covariances app-
ly to other forms of relationships, we will give a simple numerical example of the effect of
imputation on the difference between two proportions. Let the variable of interest be whether
an individual has a particular attribute or not, and suppose that one half of the respondents
fail to answer this question. The missing responses are imputed by a random within class
imputation method using two classes, 4 and B. The objective is now to compare the
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Table 1

Number of Respondents with the Attribute, and Number of
Sampled Persons by Class, Sex and Response Status

Class A Class B
M F Total M F Total
Respondents with the attribute 80 40 120 60 20 80
Total respondents 100 100 200 100 100 200
Nonrespondents 100 100 200 100 100 200
Total sample 200 200 400 200 200 400

percentages of men and women with the attribute. The data are displayed in Table 1. Since
60% of the total respondents in class A have the attribute, 60 of the 100 male and 60 of
the 100 female nonrespondents in that class will be imputed to have the attribute. Similarly,
in class B 40% of the total respondents have the attribute, and so 40 male and 40 female
nonrespondents will be imputed to have the attribute. The proportion of actual and imputed
males with the attribute is thus (80 + 60 + 60 + 40)/400 = 0.6 or 60%. For females the
corresponding proportion is (40 + 60 + 20 + 40)/400 = 0.4, or 40%. The difference bet-
ween these two percentages is 20%.

Had sex also been taken into account in forming the imputation classes, the percentages
of males and females with the attribute would have been 70% and 30%, differing by 40%.
The failure to include sex as an auxiliary variable in the imputation has thus caused a substan-
tial attenuation in the measurement of the relationship between sex and having the attribute.

3.4 Multiple Imputations

Ideally the analyst using a data set with imputed values should be able to obtain valid
results for any analyses by applying standard techniques for complete data. However, as
noted in the last section, imputation can distort measures of the relationships between
variables. It also distorts standard error estimation.

All imputation methods except deductive imputation fabricate data to some extent. The
extent of fabrication depends on how well the imputation model predicts the missing values.
If the imputation model explains only a small proportion of the variance in the variable among
the respondents, the amount of fabrication in each imputed value is likely to be substantial.
If the imputation model explains a high proportion of the respondent variance, the amount
of fabrication is likely to be less serious. However, it needs to be recognized that the fit of
the imputation model for the respondents is not necessarily a good measure of the fit for
the nonrespondents.

Standard errors computed in the standard way from a data set with imputed values will
generally be underestimates because of the fabrication involved in the imputed values. Rubin
(1978, 1979) has advocated the method of multiple imputations to provide valid inferences
from data sets with imputed values (see also Herzog and Rubin 1983; Rubin and Schenker
1986). When multiple imputations are used for the purpose of standard error estimation,
the construction of the complete data set by imputing for the missing responses is carried
out several (say m) times using the same imputation procedure. The sample estimates
z; (i = 1, 2, ..., m) of the population parameter of interest Z are computed from each of
the replicate data sets, and their average Z is calculated. A variance estimator for Z is then
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givenby V = W + [(m + 1)/m]B, where W is the average of the within-replicate variance
of zand B = L(z; — 2)?/(m — 1) is the between-replicate variance. Even with the inclu-
sion of the between-replicate variance component, however, the coverages of confidence in-
tervals for Z based on ¥ are still overstated, with the amount of overstatement increasing
with the level of nonresponse.

This overstatement of the confidence levels can be addressed by modifying the imputa-
tion procedure, as described by Rubin and Schenker (1986). Their treatment considers the
random overall imputation method, and one of their modifications allows for uncertainty
about the population mean and variance in the following way. With the standard random
overall imputation method, the conditional expected mean and variance of the imputed values
are the sample respondents’ mean and variance. With the modification, the expected mean
and variance of the imputed values for a replicate are drawn at random from appropriate
distributions. The imputed values are then a random selection of respondents’ values, modified
for the randomly-chosen mean and variance. When estimating the population mean, the ef-
fect of the changing expected mean and variance between replicates is to increase the between-
replicate variance component in . This increase gives improved coverage for the resultant
confidence intervals.

A major problem with the use of multiple imputations is the additional computer analysis
needed, which increases as the number of replicates, m, increases. For this reason, a small
value of m, such as m = 2, may be preferred. A small value of m may, however, result in
a low level of precision for the variance estimator. Even with small m, it is questionable
whether the multiple imputation approach is feasible for routine analyses. It may be best
reserved for special studies, such as that described by Herzog and Rubin (1983).

In addition to providing appropriate standard errors, another advantage of multiple im-
putations from the same imputation procedure is that it reduces the loss of precision in survey
estimates arising from the random selection of respondents to act as donors of imputed values
(see Section 3.1). This loss is reduced with multiple imputations by averaging over the
replicates. A small number of replicates serves well for this purpose. As noted earlier, Kalton
and Kish (1984) describe alternative ways of selecting the sample of respondents to achieve
this end.

A second major potential application of multiple imputations is to generate the imputa-
tions for the several replicates by different imputation procedures, making different assump-
tions about the nonrespondents. Suppose, for instance, that hourly rates of pay are to be
imputed for some earners in the sample. One procedure that might be used is the random
within class imputation method, which is based on an assumption that nonrespondents are
missing at random within the classes. If it is thought that the nonrespondents might in fact
come more heavily from those with higher rates of pay in each class, a simple modification
to the random within class method might be to impute values that are, say, 50 cents above
the donors’ values. Other imputation procedures - for instance, using different imputation
classes — could also be tried. Comparison of the survey estimates obtained from the data
sets in which the different imputation procedures are applied then provides a valuable in-
dication of the sensitivity of the estimates to the values imputed. If the estimates turn out
to be very similar, they can be accepted with greater confidence; if they differ markedly,
the estimates need to be treated with considerable caution.

4. CONCLUDING REMARKS

Weighting and imputation have been presented as two distinct methods for handling missing
survey data, but in fact there is a close relationship between them. This may be illustrated
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by considering any imputation method that assigns respondents’ values to the nonrespondents.
For univariate analyses, this process is equivalent to dropping the nonrespondents’ records
and adding the nonrespondents’ weights to those of the donor respondents (Kaiton 1986).

The differences between weighting and imputation emerge when one considers the
multivariate nature of survey data. It is possible to impute for the responses of a total
nonrespondent by taking all the responses from a single donor; however, weighting is generally
simpler in this case and it avoids the loss of precision arising from the sampling of respondents
to serve as donors. It is not practicable to use weighting to handle item nonresponse since
it would result in different sets of weights for each item; this would cause serious difficulties
for crosstabulations and other analyses of the relationships between variables.

Weighting is a single global adjustment that attempts to compensate for the missing
responses to all the items simultaneously. Imputation, on the other hand, is item-specific.
This difference has consequences for the way that the auxiliary data are used. In forming
weighting classes, the focus is on determining classes that differ in their response rates. The
choice of auxiliary variables to use in imputation, however, is primarily made in terms of
their abilities to predict the missing responses.

An assumption underlying all the procedures reviewed in this paper is that once the aux-
iliary variables have been taken into account the missing values are missing at random. Thus,
for instance, the nonrespondents are assumed to be like the respondents within weighting
and imputation classes. This assumption can be avoided by using stochastic censoring models,
as has been done by Greenlees et al. (1982) in imputing wages and salaries in the Current
Population Survey. However, as Little (1986b) observes, these models are highly sensitive
to the distributional assumptions made.

An alternative approach for handling missing survey data is to leave the values missing
in the data set and let the analyst incorporate appropriate missing data models into the analysis
(Little 1982). This approach has much to commend it, but the labor and computing time
needed to implement it effectively preclude its use as a general purpose strategy. Rather,
the approach seems best suited for a small range of special analyses. In order to permit the
analyst to adopt this approach, it is essential that all imputed values be flagged to indicate
they are not actual responses, so that they can then be dropped from the analysis.

Finally, we should note that all methods of handling missing survey data must depend
upon untestable assumptions. If the assumptions are seriously in error, the analyses may
give misleading conclusions. The only secure safeguard against serious nonresponse bias in
survey estimates is to keep the amount of missing data small.

REFERENCES

BAILAR III, J.C., and BAILAR, B.A. (1978). Comparison of two procedures for imputing missing
survey values. Proceedings of the Section on Survey Research Methods, American Statistical Associa-
tion, 462-467.

BAILAR, B.A., and BAILAR III, J.C. (1983). Comparison of the biases of the hot-deck imputation
procedure with an ‘‘equal-weights’’ imputation procedure. In Incomplete Data in Sample Surveys,
Volume 3, Proceedings of the Symposium, (Eds. W.G. Madow and 1. Olkin), New York: Academic
Press, 299-311.

BAILAR, B.A., BAILEY, L., and CORBY, C.A. (1978). A comparison of some adjustment and
weighting procedures for survey data. In Survey Sampling and Measurement, (Ed. N.K. Namboodiri),
New York: Academic Press, 175-198.

BARTHOLOMEW, D.J. (1961). A method of allowing for ‘not at home’ bias in sample surveys. Ap-
plied Statistics, 10, 52-59.



Survey Methodology, June 1986 15

BISHOP, Y.M.M., FIENBERG, S.E., and HOLLAND, P.W. (1975). Discrete Multivariate Analyses.
Cambridge, Mass: The MIT Press.

BROOKS, C.A., and BAILAR, B.A. (1978). An Error Profile: Employment as Measured by the Cur-
rent Population Survey. Statistical Policy Working Paper 3. U.S. Department of Commerce.
Washington, D.C.: U.S. Government Printing Office.

CHAPMAN, D.W., BAILEY, L., and KASPRZYK, D. (1986). Nonresponse adjustment procedures
at the U.S. Census Bureau. Survey Methodology, forthcoming.

CODER, J. (1978). Income data collection and processing from the March Income Supplement to the
Current Population Survey. The Survey of Income and Program Participation Proceedings of the
Workshop on Data Processing, February 23-24, 1978, (Ed. D. Kasprzyk), Chapter II. Washington,
D.C.: U.S. Department of Health, Education and Welfare.

COLLEDGE, M.J., JOHNSON, J.H., PARE, R., and SANDE, I.G. (1978). Large scale imputation
of survey data. Proceedings of the Section on Survey Research Methods, American Statistical Associa-
tion, 431-436.

COX, B.G., and COHEN, S.B. (1985). Methodological Issues Sfor Health Care Surveys. New York:
Marcel Dekker.

DAVID, M., LITTLE, R.J.A., SAMUHEL, M.E., and TRIEST, R.K. (1986). Alternative methods
for CPS income imputation. Journal of the American Statistical Association, 81, 29-41.

DREW, J.H., and FULLER, W.A. (1980). Modelling nonresponse in surveys with callbacks. Pro-
ceedings of the Section on Survey Research Methods, American Statistical Association, 639-642.

DREW, J.H., and FULLER, W.A. (1981). Nonresponse in complex multiphase surveys. Proceedings
of the Section on Survey Research Methods, American Statistical Association, 623-628.

FORD, B.L. (1983). An overview of hot-deck procedures. In Incomplete data in Sample Surveys, Volume
2, Theory and Bibliographies, (Eds. W.G. Madow, 1. Olkin and D.B. Rubin), New York: Academic
Press, 185-207.

GREENLEES, W.S., REECE, J.S., and ZIESCHANG, K.D. (1982). Imputation of missing values

when the probability of response depends on the variable being imputed. Journal of the American
Statistical Association, 77, 251-261.

HERZOG, T.N., and RUBIN, D.B. (1983). Using multiple imputation to handle nonresponse in sam-
ple surveys. In Incomplete data in Sample Surveys, Volume 2, Theory and Bibliographies, (Eds.
W.G. Madow, I. Olkin and D.B. Rubin), New York: Academic Press, 209-245.

KALTON, G. (1983). Compensating for Missing Survey Data. Ann Arbor: Survey Research Center,
University of Michigan.

KALTON, G. (1986). Handling wave nonresponse in panel surveys. Journal of Official Statistics, 2,
forthcoming.

KALTON, G., and KASPRZYK, D. (1982). Imputing for missing survey responses. Proceedings of
the Section on Survey Research Methods, American Statistical Association, 22-31.

KALTON, G., and KISH, L. (1984). Some efficient random imputation methods. Communications
in Statistics - Theory and Methods, 13(16), 1919-1939.

KISH, L. (1965). Survey Sampling. New York: Wiley.

KISH, L. (1976). Optima and proxima in linear sample designs. Journal of the Royal Statistical Socie-
ty, Ser. A, 139, 80-95.

LITTLE, R.J.A. (1982). Models for nonresponse in sample surveys. Journal of the American Statistical
Association, 77, 237-250.

LITTLE, R.J.A. (1986a). Survey nonresponse adjustments for estimates of means. International
Statistical Review, 54, 139-157.

LITTLE, R.J.A. (1986b). Missing data in Census Bureau surveys. Proceedings of the Second Annual
Census Bureau Research Conference, 442-454.



16 Kalton and Kasprzyk: Treatment of Missing Survey Data

LITTLE, R.J.A., and DAVID, M.H. (1983). Weighting adjustments for non-response in panel surveys.
Working Paper, Washington, D.C.: U.S. Bureau of the Census.

OH, H.L., and SCHEUREN, F. (1978a). Multivariate raking ratio estimation in the 1973 Exact Match
Study. Proceedmgs of the Section on Survey Research Methods, American Statistical Association,
716-722.

OH, H.L., and SCHEUREN, F. (1978b). Some unresolved application issues in raking ratio estima-
tion. Proceedzngs of the Section on Survey Research Methods, American Statistical Association,
723-728.

OH, H.L., and SCHEUREN, F. (1980). Estimating the variance impact of missing CPS income data.
Proceedzngs of the Section on Survey Research Methods, American Statistical Association, 408-415.

OH, H.L., and SCHEUREN, F. (1983). Weighting adjustment for unit nonresponse. In Incomplete
data in Sample Surveys, Volume 2, Theory and Bibliographies, (Eds. W.G. Madow, I. Olkin and
D.B. Rubin), New York: Academic Press, 143-184.

OH, H.L., SCHEUREN, F., and NISSELSON, H. (1980) Differential bias impacts of alternative
Census Bureau hot deck procedures for imputing missing CPS income data. Proceedings of the
Section on Survey Research Methods, American Statistical Association, 416-420.

PALMER, S. (1967). On the character and influence of nonresponse in the Current Population Survey.
Proceedings of the Social Statistics Section, American Statistical Association, 73-80.

PALMER, S., and JONES, C. (1966). A look at alternate imputation procedures for CPS noninter-
views. Washington, D.C.: U.S. Bureau of the Census memorandum.

POLITZ, A., and SIMMONS, W. (1949). I. An attempt to get the ‘not at homes’ into the sample
without callbacks II. Further theoretical considerations regarding the plan for eliminating callbacks.
Journal of the American Statistical Association, 44, 9-31.

POLITZ, A., and SIMMONS, W. (1950). Note on an attempt to get the ‘not at homes’ into the sam-
ple wrthout callbacks. Journal of the American Statistical Association, 45, 136-137.

RUBIN, D.B. (1978). Multiple imputations in sample surveys: a phenomenological Bayesian approach
to nonresponse. Proceedings of the Section on Survey Research Methods, American Statistical
Association, 20-34.

RUBIN, D.B. (1979). Illustrating the use of multiple imputations to handle nonresponse in sample
surveys. Bulletin of the International Statistical Institute, 48(2), 517-532.

RUBIN, D.B., and SCHENKER, N. (1986). Multiple imputation for interval estimation from simple
random samples with ignorable nonresponse. Journal of the American Statistical Association, 81,
366-374.

SANDE, G. (1979). Numerical edit and imputation. Paper presented to the International Association
for Statistical Computing, 42nd Session of the International Statistical Institute.

SANDE, 1.G. (1983). Hot-deck imputation procedures. In Incomplete Data in Sample Surveys, Volume
3, Proceedings of the Symposium, (Eds. W.G. Madow and 1. Olkin), New York: Academic Press,
339-349.

SANTOS, R.L. (1981). Effects of imputation on regression coefficients. Proceedings of the Section
on Survey Research Methods, American Statistical Association, 140-145.

THOMSEN, 1. (1973). A note on the efficiency of weighting subclass means to reduce the effects of
nonresponse when analyzing survey data. Statistisk Tidskrift, 4, 278-283.

THOMSEN, 1., and SIRING, E. (1983). On the causes and effects of nonresponse: Norwegian ex-
periences. In Incomplete Data in Sample Surveys, Volume 3, Proceedings of the Symposium, (Eds.
W.G. Madow and 1. Olkin), New York: Academic Press, 25-29.

VACEK, P.M., and ASHIKAGA, T. (1980). An examination of the nearest neighbor rule for imputing
missing values Proceedings of the Statistical Computing Section, American Statistical Association,
326-331.

WELNIAK, E.J., and CODER, J.F. (1980). A measure of the bias in the March CPS earnings im-
putation system. Proceedings of the Section on Survey Research Methods, American Statistical
Association, 421-425.



