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ABSTRACT 
 

Nearly all surveys use complex sample designs to collect data and these data are frequently used for statistical analyses 
beyond the estimation of simple descriptive parameters of the target population. Many procedures available in popular 
statistical software packages are not appropriate for this purpose because the analyses are based on the assumption that the 
sample has been drawn with simple random sampling. Therefore, the results of the analyses conducted using these 
software packages would not be valid when the sample design incorporates multistage sampling, stratification, or 
clustering. We discuss WesVar software that computes estimates and replication variance estimates by properly reflecting 
complex sampling and estimation procedures. We also illustrate the WesVar features by using data from two Westat 
surveys that employ complex sample designs: the Third International Mathematics and Science Study (TIMSS), and the 
National Health and Nutrition Examination Survey (NHANES). 
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1.  INTRODUCTION 

 
Use of standard statistical techniques is not appropriate for analyzing data collected in complex surveys. Specialized 
software is usually required to account for features like selection with varying probabilities and nonindependent 
selections.  Estimates from complex survey data, like ratio means, regression coefficients, and odds ratios are 
themselves complicated, and methods of standard error estimation are needed that account for these complexities. 
 
WesVar computes estimates and replication variance estimates that do properly reflect complex sampling and 
estimation procedures. Replication variance estimation consists of repeatedly calculating estimates for subgroups of 
the full sample and then computing the variance among these “replicate” estimates. 
 
WesVar is flexible and can be used with a wide range of complex sample designs, including multistage, stratified, 
and unequal probability samples. The replicate variance estimates can also reflect many types of estimation schemes, 
such as nonresponse adjustment and ratio estimation (e.g., poststratification and raking). WesVar’s powerful features 
and user-friendly Windows® interface make it easy to create replicate weights and use them for analysis or to import 
and analyze files that already contain replicate weights. 
 
WesVar can calculate estimates of statistics such as totals and means, along with their standard error estimates. It is 
also easy to use WesVar to compute variance estimates for complex functions of estimates, e.g., ratios, differences of 
ratios, and log-odds ratios, based on tabular data. WesVar can also estimate coefficients for linear and logistic 
regression models and test the significance of linear combinations of parameter estimates. 
 
Section 2 of this paper gives an overview of replication methods that are included in WesVar. The different types of 
weights that can be calculated are discussed in Section 3, and estimates in tables and regression models are described 
in Sections 4 and 5.  Examples of analyses conducted with WesVar using data from complex surveys are included in 
section 6.  Version 4.2 of WesVar has recently been released to the public. More detailed descriptions of its features 
are available at www.westat.com/wesvar. One of the most useful enhancements in WesVar version 4.2 is its ability to 
directly import files from a variety of formats, including SAS® (sd2, sas7bdat, ssd, transport), SPSS®, Stata®, and 
Microsoft Excel® and Access®. 

                                                           
1Westat, Inc. 1650 Research Boulevard, Rockville, Maryland 20850, USA. 



 
2.  OVERVIEW OF REPLICATION METHODS 

 
The basic idea behind replication is to select subsamples repeatedly from the whole sample, calculate the statistic of 
interest for each subsample, and then use these subsample or replicate statistics to estimate the variance of the full-
sample statistic. Different ways of creating subsamples from the full sample result in different replication methods. 
The subsamples are called replicates and the statistics calculated from these replicates are called replicate estimates.  
WesVar supports the following replication methods of variance estimation: 
 Balanced Repeated Replication for stratified designs with two primary sampling units (PSUs) per stratum 

(BRR); 
 Fay’s BRR variant (FAY); 
 Jackknife for unstratified designs (JK1); 
 Jackknife for stratified designs with two PSUs per stratum (JK2); and 
 Jackknife for stratified designs with two or more PSUs per stratum (JKn). 

 
Other methods of replication such as the bootstrap can be handled in WesVar, but you must input the replicate 
weights and factors appropriate for that method. 
 

Suppose that θ̂  is the full-sample estimate of some population parameter θ . The replication variance estimator, 

( )ˆv θ , computed by WesVar takes the form 
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where 

 ( g )θ̂   is the estimate of θ  based on the observations included in the g-th replicate; 

 G  is the total number of replicates formed; and 
 c  is a constant that depends on the replication method. 
The factor gf  is a finite population correction that can be used with the jackknife methods; gh  is a scaling factor 

used only for the jackknife methods. 
 
One of the main advantages of replication is its ease of use at the analysis stage. The same estimation procedure is 
used for the full sample and for each replicate. The variance estimates are then readily computed by a simple 
procedure. Furthermore, the same procedure is applicable to most statistics including means, percentages, ratios, 
regression coefficients, and combinations like differences. These estimates can also be calculated for analytic groups 
or subpopulations. A user need not understand the sampling or estimation methods if replicate weights are included 
with the data. 
 
Another important advantage of replication is that it provides a simple way to account for adjustments that are made 
in weighting. Frequently, sampling weights are adjusted for nonresponse, poststratification or raking to control totals. 
By separately computing the weighting adjustments for each replicate, it is possible to reflect the effects of weight 
adjustments in the estimates of variance. By doing so, replication variance estimates have desirable design-based and 
model-based statistical properties. Shao (1996) reviews the methods and their design-based properties in finite 
population estimation while Valliant, Dorfman, and Royall (2000) cover model-based properties. Appendix D of the 
WesVar manual (Westat 2000) gives a detailed discussion of how to construct replicates for some common sample 
designs. That appendix also contains a flowchart of the issues to consider when forming replicates. 
 
2.1 Balanced Repeated Replication (BRR) and Fay’s Method 
 
Balanced repeated replication applies to single-stage or multi-stage designs where the population of PSUs can be 
grouped into L variance strata (referred to as VarStrat in WesVar), with two PSUs (referred to as VarUnits) selected 



from each stratum.  For designs that do not fit this standard form, strata or PSUs can often be legitimately grouped, 
as discussed in Appendix D of the WesVar manual, to create a two-per-stratum design. 
Each replicate half-sample estimate is formed by selecting one of the two VarUnits from each VarStrat based on a 
Hadamard matrix (see McCarthy 1969). Then, only the selected VarUnits are used to estimate the parameter of 
interest. Hadamard matrices of various sizes (up to 512) are stored and the same matrix is applied for each file that 
has the same number of VarStrat. These matrices give orthogonally balanced sets of replicates (see Wolter 1985, p. 
115). WesVar will create more than 512 replicate weights for BRR (or Fay’s method) if you supply an appropriate 
Hadamard matrix in a text file. The maximum matrix size is 9,984 by 9,984. 
 
The Fay’s method (Fay 1989) is a variant of BRR that has better properties in certain situations. Standard BRR can 
run into problems when computing an estimate for a small domain or estimating a ratio if the denominator has few 
sample cases. Fay's method corrects this problem by retaining all sample units in each replicate while modifying the 
sample weights differently than in the standard BRR. 
 
2.2 Jackknife Methods 
 
The Jackknife 1 (JK1) is appropriate when explicit stratification has not been used to select the sample. To form the 
replicates for JK1, identify G subsets using VarUnit. If a subset (i.e., a VarUnit) is a single sample unit, then JK1 is 
the standard delete-one jackknife. Replicates are formed by deleting one VarUnit at a time and multiplying the 
weights for the other VarUnits by ( )1G G −  where G is the number of replicates. When each subset to be deleted is 

a randomly formed group of units, the JK1 method is essentially the same as the nonoverlapping random group 
method discussed in Wolter (1985, Chapter 2). The maximum number of jackknife replicates is 9,999. 
 
The basic sample design assumed for the Jackknife 2 (JK2) method is the same as that used for BRR — two PSUs 
(VarUnits) are sampled in each of L strata (VarStrat). In the case of a two-per-stratum design, there is a 
simplification of the jackknife that occurs for linear estimators that is used for JK2. The JKn method is more general 
and can be used when the number of PSUs (VarUnits) in a stratum (VarStrat) is greater than or equal to 2. The 

number of replicates, G, is equal to 
1

L
hh

n=∑  where L is the number of VarStrat and hn  is the number of VarUnits 

in VarStrat h. 
 
2.3 Degrees of Freedom for Variance Estimates 
 
The lower and upper bounds of confidence intervals and the p value for test statistics are based on a t statistic with 
degrees of freedom (DF) determined by the method of variance estimation. Rust and Rao (1996) give theory for the 
DF approximations. An alternative is to assume an infinite number of degrees of freedom in which case the normal 
approximation is used. For the variance estimation methods offered by WesVar, the default numbers of degrees of 
freedom are based on the number of VarStrat and replicates and are discussed in Appendix A of the WesVar manual.  
 
2.4 Finite Population Correction Factors 
 
The theory for replication methods assumes that the first stage sampling units have been selected with replacement, 
or if not, that the design can be safely treated as if with replacement sampling had been used. There is a limited 
capability to introduce a finite population correction (FPC) for the jackknife methods but not for BRR or Fay's 
method. The FPCs must be associated with individual replicates, as shown in expression (2.1), and are discussed in 
detail in Appendix A of the manual. 
 
The FPC factors can be in a separate file or can be specified on the Attach Factors screen.  
 



3.  WEIGHTING WITH WESVAR 
 
The first step in weighting is to define the method of variance estimation to be used (BRR, Fay, JK1, JK2, or JKn).  
The user specifies the variance strata (VarStrat) and the PSUs (VarUnit) within each stratum, and the full sample 
base weights.  The software then calculates replicate base weights appropriate for the selected method of variance 
estimation.  WesVar also allows nonresponse adjustment, and poststratification and raking adjustments. 
 
3.1 Nonresponse Adjustment 
 
WesVar calculates nonresponse adjustments using the method of weighting classes. Both eligible responding and 
nonresponding units are classified into cells and the nonresponse adjustment is calculated within each cell. WesVar 
computes the nonresponse adjustments for both the full sample and the replicate weights. Both full sample weights 
and replicate weights need to be on the data file prior to nonresponse adjustment. The outputs are the full sample and 
replicate nonresponse-adjusted weights on a newly created WesVar data file that has the same number of records as 
the input data file. Nonrespondents will be on the file with weights of zero. Any ineligible units will still be on the 
file with their original weights. These ineligible cases may need to be eliminated using the subpopulation or subset 
features when doing tabulations. 
 
By using the nonresponse adjustment procedure, WesVar can also adjust sample weights for unknown eligibility.  
Adjustment factors for this procedure are calculated in the same fashion as nonresponse adjustments. If this 
adjustment is used, it must be done before the nonresponse adjustment. The adjustment for unknown eligibility is 
required when the eligibility of all the sample cases cannot be determined.  In the first step the base weights of 
sample cases with unknown eligibility are distributed proportionally over those with known eligibility.  In the second 
step, the eligibility-adjusted weights of nonrespondents are proportionally distributed over the respondents. The 
weighting classes for unknown eligibility and nonresponse adjustments should be determined separately for each 
adjustment. 
 
3.2 Poststratification 
 
To use poststratification, the user must provide a file with poststrata cell identifiers and control totals. Note that the 
cell identifier can be constructed from a combination of other variables so that poststratification is not necessarily 
limited to a single variable. WesVar computes the poststratification adjustments for both the full sample and the 
replicate weights. If the file already contains poststratified full sample and replicate weights, then these weights 
should be used in analyzing the data. No special statements are required to notify the program that the weights being 
input are poststratified. 
 
3.3 Raking 
 
To use WesVar’s Raking function, specify a text file that contains the control totals for each dimension. The fields in 
this text file should include the level of the variable and the corresponding control total. WesVar allows for raking 
with up to a maximum of eight dimensions. Raking is an iterative procedure. The user can specify the maximum 
number of iterations or tolerances on the absolute or relative distance that marginal estimates are from the controls. 
Processing stops when the specified number of iterations is completed or one of the user-specified stopping rules is 
satisfied. The default number of iterations is four; the maximum number of iterations is 100. 
 
3.4 Self-Representing Units 
 
Wesvar can handle designs with self-representing (SR) units. Note that in multi-stage designs, units that are 
contained in a SR unit at one stage but are sampled at another are not SR units. This procedure should only be used 
for units that are absolute certainties, and WesVar displays a message that warns the user that the identified SR units 
are treated as absolute certainties in the calculation of variances. 
 



The specification of SR units depends on the variance estimation method. If JK1 is used, then the variable that 
defines VarUnit is used to identify the SR units. For the other methods, the VarStrat variable is used to identify the 
SR units. Once the SR units are identified, the replicate weights that are associated with non-SR units are created. 
The number of replicates depends on the number of non-SR units for JK1, or the number of non-SR strata for other 
methods.  
 

4.  ESTIMATES FROM TABLES REQUEST 
 
Creating estimates and their standard errors in tables is largely controlled in WesVar by specifying Table Request 
options such as Analysis Variables, Table Variables, Computed Statistics and Cell Function Statistics. A Table 
Request allows you to analyze complex survey data by producing statistics such as totals, ratio means, proportions, 
general ratios, or other functions of totals. The Analysis Variables option in a Table Request allows you to specify 
the numeric variables for which population aggregates are to be estimated (such as income). The Computed Statistics 
option is used to create estimates that are functions of estimated totals.  
 
Frequently, statistics are needed for subgroups (or domains) of the population and the analysis often requires the use 
of crosstabulations. The Table Set option of a Table Request can be used to specify the subgroups defined by a single 
categorical variable, as well as subgroups defined by crosstabulating two or more categorical variables. Within a 
table, Cell Function Statistics are used to create estimates that are functions of the estimates in two or more cells of a 
table. 
 
4.1 Estimates of Totals and Ratios 
 
A Table Request operates by calculating weighted totals for the specified variables of interest. The estimated general 
ratio is the ratio of two estimated totals. The ratio means and proportions are special cases of the general ratio 
estimates.  
 
4.2 Medians and Quantiles 
 
The median and the value at any whole percentile point can also be estimated in a Table Request. The use of 
replication methods for the direct estimation of variances of estimated percentiles, particularly the median, has been 
and continues to be an active area of research. The research by Kovar, Rao, and Wu (1988) indicates that the 
Jackknife method performs poorly for estimates of quantiles, whereas BRR and Fay’s methods work well (Rao and 
Shao 1999). WesVar can compute the variances of quantiles indirectly using the Woodruff method (see Särndal, 
Swensson, and Wretman 1992), or directly by replication.  
 
The methods for computing variances for quantiles are the Group and No Group methods. The Group method is 
included as a means of limiting computations on large data sets. The number of groups can be a value from 3 to 500 
(the default is 50).  
 
4.3 Computed Statistics 
 
A number of functions are available on the Computed Statistics panel, e.g., Mean, GeoMean, Median, Quantiles, 
Log, etc. Other more complex Computed Statistics can also be specified in WesVar. Note that if a table variable is 
specified, the expression is evaluated for each crossclassification of the table variables. 
 
4.4 Plausible Values or Multiple Imputations 
 
The theory of plausible value (PV) estimation in education achievement assessments is due to Mislevy and Sheehan 
(1989). Their work is based on more general procedure of multiple imputation described by Rubin (1987). Suppose 

that we have M plausible values and the estimates of a parameter θ  from these PVs are 1θ̂ , 2θ̂ , … Mθ̂ . Then, the 



algorithm for combining the results of individual repeated analyses to estimate the parameter θ  and its variance is as 
follows. 
 

The estimator of the parameter is the average of the PV estimates, i.e., 1
1
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mm
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computed using formulas specific to PVs or multiple imputation. If we denote the replication variance of mθ̂  as mv , 

then the final estimate of the variance is calculated as 
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where the first term is the “within” variance component and the second term is the “between” variance component. 
 
4.5 Standardised Rates 
 
WesVar can calculate standardised rates using the direct standardisation method. Rates are adjusted using control 
totals (or standard distribution) so that the effects of population composition are eliminated when making 
comparisons between groups. For example, death rates in two countries may be standardized by age, so that 
comparisons of national death rates are not affected by differences in the age distributions of the countries. 
 
4.6 Differences and other Complex Estimates 
 
WesVar can also be used to perform analyses involving complex functions of estimated totals by defining the 
Computed Statistics, specifying table variables, and defining a function of the cell estimates on the Cell Functions 
screen. The table variable defines the cells in the crosstabulation. It is important to make the distinction between the 
Computed Statistics and Cell Function Statistics. The Cell Function Statistics allows differences (or more complex 
functions) between the cells of a crosstabulation to be calculated for the same variable in different subpopulations, 
while the Computed Statistics is used to calculate the differences across the entire population between different 
variables. 
 
4.7 Design Effects 
 
The design effect (DEFF) computed by WesVar is the ratio of the variance under the actual survey design to the 
variance under simple random sampling with replacement (SRSWR). This definition of DEFF differs from that of 
Kish (1965), who uses the variance from simple random sampling without replacement in the denominator. 
Moreover, the SRSWR variance is conditional on the achieved sample size for the domain of interest. For multi-way 
tables though, the DEFF is computed based on the sample size for the two-way marginal.  
 
4.8 Confidence Intervals for Proportions 
 
The default method of constructing a confidence interval for a percentage uses a symmetric interval of the form 

( )ˆ ˆp t v pν± , where p̂  is the estimated percentage, ( )ˆv p  is its estimated variance, and tν is a multiplier from the t-

distribution with ν  degrees of freedom. A defect of this method is that for extreme percentages the upper or lower 
confidence bounds can go beyond the acceptable range of [0,100]. In such situations, the Wilson score method 
(Newcombe 1998) can be used to calculate confidence intervals that will always remain within [0,100]. Unlike the t 
approximation intervals, the Wilson intervals will not be symmetric around the point estimate of the percentage. 



4.9 Chi-Square Statistics 
 
Testing for independence in a two-way table can be done simply with a Table Request. For this purpose, Pearson’s 
chi-square statistic is calculated, as well as two chi-square statistics, denoted by RS2 and RS3, that have been 
modified to reflect the complex sample design. The modified chi-square statistics rely on adjusting the Pearson chi-
square statistics using an estimated “design effect”, as suggested by Rao and Scott (1981, 1984). 
 
4.10 Missing Data Procedures 
 
If the input data set contains more than one representation of missing data, all of these representations are converted 
to one missing value representation for WesVar and are treated as the same missing value in all procedures. 
 
If data are missing, a Table Request will still produce estimates and their standard errors under most circumstances. 
When defining subgroups of a table, the default is to exclude from the output any statistics for subgroups defined by 
a missing value on one of the categorical table variables. If any analysis variable or any variable used to define a 
Computed Statistics is missing the default is to delete the entire record from the request. Thus, WesVar restricts the 
data to those records with no missing values for all of the analysis variables and all of the variables used to form 
Computed Statistics. Cases with missing values are also excluded from regression requests. 
 
 

5.  MODELS IN REGRESSION 
 
Users can request linear, logistic, or multinomial regression models. WesVar’s regression procedures estimate the 
parameters of a regression model and provide a variety of other statistics, including a test for the overall fit of the 
model and of individual parameters, measures of fit, odds ratios, and other statistics. Appendix C of the WesVar 
manual gives detailed discussions of the computational methods used to solve for parameter estimates and other 
model statistics. We give only a brief sketch of the techniques here. 
 
5.1 Linear Regression Model 
 
WesVar fits linear regression models of the form β= +Y X e  where Y is the n × 1 column vector of sample 

observations, β = ( )1 p, ,β βK  is the p × 1 column vector of regression coefficients, X is the n × p matrix of 

independent variables and e is the n × 1 column vector of random errors. The i-th row of X is the vector of 

explanatory variables for unit i, ( )1 2 = ,  , i i i ipx ,x x′x K . The vector ix  can contain continuous or discrete variables. 

The weighted least squares estimate of the parameter vector is ( )−′ ′= 1b X WX X WY  where W is the n n×  diagonal 

matrix formed from the n full sample weights 1 2 nw ,w , ,wK . 

 
WesVar also calculates the weighted least squares estimate for each replicate subsample. These replicate estimates 
are then combined with a matrix formula, analogous to (2.1), to give a replication estimate of the covariance matrix 
of b. Elements of this covariance estimate are then used to construct t-tests and confidence intervals for individual 
coefficients and customized tests on linear combinations of regression coefficients. 
 
5.2 Logistic Regression Model 
 
In a logistic regression model, with ix  defined as above for linear regression, the expected value of a dichotomous 

variable iY  is assumed to be ( ) ( )
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. WesVar uses a pseudo maximum likelihood approach for 

parameter estimation in which the value b is found that maximizes the weighted sample log-likelihood. This estimate 



is known as the pseudo maximum likelihood estimate (MLE). WesVar solves for the pseudo-MLE using a modified 
version of the Newton-Raphson method. Computational checks are also included for both convergence and 
divergence of parameter estimates. 
 
WesVar computes three measures of fit for logistic regression models that are based on comparing the log-likelihood 
for the fitted model to that for a model that includes only the intercept. The three measures are known in the 
literature as negative log-likelihood (or entropy), Cox-Snell likelihood ratio, and Estrella likelihood ratio. All three 
of the measures are printed by default. The three alternatives, along with several others, are reviewed in Mittlböck 
and Schemper (1996) and Estrella (1998). 
 
By default WesVar computes odds ratios only for main effects that are not involved in interactions. A two-sided 
confidence interval is also calculated for each odds ratio. The logarithm of the odds (or log-odds) that the response is 

a 1 for sample unit i is 
( )

( )1
i

i
i

p
log

p

 
′= −  

x
x

x
β , which is also referred to as the logit of ( )ip x . When a variable ikx  is 

continuous, a parameter kβ  is the logarithm of the odds ratio of a 1-unit change in ikx , holding all other variables 

constant. The quantity ( )kexp β  is, thus, the odds ratio of a 1-unit change in ikx  for any unit i. A two-sided 

confidence interval for an odds ratio is found by putting a confidence interval on the parameter kβ  and then 

transforming to the odds ratio scale. The standard error of the estimate of kβ  is estimated using the replication 

method specified by the user. 
 
In a model that includes interactions, calculation of a meaningful odds ratio is more complicated, but WesVar has a 
tool that allows a user to compute a customized odds ratio by combining estimates of the model parameters.  
 
5.3 Multinomial Logistic Regression Model 
 
A multinomial logistic regression model or generalized logit model is an extension of the logistic regression model 
and is described in detail in Agresti (1990). In multinomial logistic regression, the response variable Y can be a 
categorical response with K categories. As in dichotomous logistic regression, WesVar uses the pseudo MLE method 
for parameter estimation, both in the full sample and the replicates. 
 
The same three measures of fit — entropy, Cox-Snell, and Estrella — are computed in multinomial logistic as in 
dichotomous logistic regression. Odds ratios and confidence intervals are also calculated in a similar way. For 
multinomial logistic regression a default odds ratio is the ratio of the odds of being in category k of the multinomial 
versus the reference category K given a 1-unit change in one of the explanatory variables (holding the other predictor 
variables constant). WesVar also provides a tool for computing customized odds ratios that are not printed by 
default. 
 

6.  EXAMPLES USING WESVAR 
 
We illustrate two examples of data analysis from Westat surveys using WesVar.  These are the Third International 
Mathematics and Science Study (TIMSS) and the National Health and Nutrition Examination Survey (NHANES).  
 
6.1 Third International Mathematics and Science Study (TIMSS) 
 
The basic sample design implemented for TIMSS is generally a two-stage stratified cluster sample design.  The first 
stage consists of a stratified sample of schools, and the second stage consists of samples of classrooms from each 
eligible target grade in sampled schools.  In some countries, a third stage was added, in which students were sampled 
within classrooms.  Table 6.1 provides a comparison between unweighted SAS, weighted SAS and the WesVar 
results.  Without special programming SAS PROC MEANS procedure can handle one PV at a time.  The weighted 
SAS standard errors do not account for clustering and are much smaller than the WesVar standard errors using only 



the first PV or, more appropriately, all five PVs in the multiple imputation formula.  Note that the “between” 
variance component for the PV analysis is small as compared with “within” component in this case. 
 
Table 6.1: Comparison between Unweighted SAS, Weighted SAS, and WesVar Results. 
 

     
Unweighted SAS Weighted SAS WesVar 

First PV First PV First PV 5 PVs 
 

Country 
 

Test 
Mean SE Mean SE Mean SE Mean SE 

          
Netherlands Science 551.7 1.3 543.5 1.3 543.5 6.6 544.8 7.0 
 Math 544.4 1.2 537.9 1.3 537.9 6.8 539.9 7.2 
          
Belgium Science 547.1 0.9 534.0 1.0 534.0 2.7 534.9 2.9 
 Math 573.9 0.9 556.5 1.1 556.5 3.1 558.0 3.5 

Note:  TIMSS uses JK2 method of replication. Number of replicates is 74. 
 
 
6.2 National Health and Nutrition Examination Survey (NHANES) 
 
The NHANES sample represents the total non-institutionalized civilian population in the 50 states and the District of 
Columbia in the U.S.  A four-stage sample design is being used.  To reduce the amount of travel, PSUs are defined 
to be individual counties or groupings of adjacent counties.  The second stage consists of area segments made up of 
Census blocks or combinations of blocks.  The third stage of sample selection consists of households and non-
institutional group quarters.  Sample persons within the households or group quarters are the fourth stage.  The 
sample PSUs and area segments are selected with probability proportional to size (PPS). The sample is designed to 
produce approximately equal sample size per PSU. 
 
To illustrate logistic regression, we used a subset of the full sample collected in 1994 to model the presence of 
asthma (ASTHMA) as a function of whether a person had smoked 100 or more cigarrettes in his/her lifetime 
(CIG100[2]), a 4-level race-ethnicity variable (RACETHN[4]), presence or absence of hayfever (HAYFEVER[2]) 
and gender (SEX[2]).  WesVar uses the [n] notation to denote a categorical variable with n levels.  WesVar 
automatically creates dummy variables for each categorical variable and sets the parameter solution for the highest 
level of each to zero to obtain a set of solutions.  
 
Variances were estimated using Fay’s method with 24 replicates.  By default, WesVar prints parameter estimates and 
various hypotheses tests, which we omit because of space limitations.  The F-value for overall fit was 30.35 with 6 
and 18 degrees of freedom, which is highly significant.  Table 6.2 shows odds ratios for the main effects.  For 
example, CIG100.1 denotes the first level of CIG100, i.e., the person has smoked 100 or more cigarettes.  The odds 
ratio of having asthma for someone who has smoked this many cigarettes compared to someone who has not is 1.65 
with a 95% confidence interval of [1.27, 2.13].  We also present a user-constructed odds ratio for comparing female 
smokers with hayfever to male nonsmokers who do not have hayfever (irrespective of race-ethnicity).  On the logit 
scale the difference in the expected values for the two groups is CIG100.1 + HAYFEVER.1-SEX.1.  The odds ratio 
is denoted by OR1 in Table 6.2 and is equal to 9.63 with a 95 % confidence interval of [5.52, 16.81]. 



Table 6.2 Odds ratio results 
 

    
Parameter Estimate Lower 95% Upper 95% 

    
CIG100.1 1.65 1.27 2.13 
RACETHN.1 0.72 0.47 1.11 
RACETHN.2 0.90 0.59 1.38 
RACETHN.3 0.53 0.37 0.77 
HAYFEVER.1 4.45 3.24 6.11 
SEX.1 0.76 0.59 0.98 
OR1 9.63 5.52 16.81 
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