Keyword search

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Type

2 facets displayed. 0 facets selected.

Year of publication

1 facets displayed. 1 facets selected.

Survey or statistical program

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (4)

All (4) ((4 results))

  • Public use microdata: 56M0002G
    Description:

    This guide is for the Household Internet Use Survey microdata file. The Household Internet Use Survey is being conducted by Statistics Canada on behalf of Industry Canada. The information from this survey will assist the Science and Technology Redesign Project at Statistics Canada to fulfil a three-year contractual agreement between them and the Telecommunications and Policy Branch of Industry Canada. The Household Internet Use Survey is a voluntary survey. It will provide information on the use of computers for communication purposes, and households' access and use of the Internet from home.

    The objective of this survey is to measure the demand for telecommunications services by Canadian households. To assess the demand, we measure the frequency and intensity of use of what is commonly referred to as "the information highway" among other things. This was done by asking questions relating to the accessibility of the Internet to Canadian households both at home, the workplace and a number of other locations. The information collected will be used to update and expand upon previous studies done by Statistics Canada on the topic of the Information Highway.

    Release date: 2004-09-28

  • Articles and reports: 11-522-X20020016745
    Description:

    The attractiveness of the Regression Discontinuity Design (RDD) rests on its close similarity to a normal experimental design. On the other hand, it is of limited applicability since it is not often the case that units are assigned to the treatment group on the basis of an observable (to the analyst) pre-program measure. Besides, it only allows identification of the mean impact on a very specific subpopulation. In this technical paper, we show that the RDD straightforwardly generalizes to the instances in which the units' eligibility is established on an observable pre-program measure with eligible units allowed to freely self-select into the program. This set-up also proves to be very convenient for building a specification test on conventional non-experimental estimators of the program mean impact. The data requirements are clearly described.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016750
    Description:

    Analyses of data from social and economic surveys sometimes use generalized variance function models to approximate the design variance of point estimators of population means and proportions. Analysts may use the resulting standard error estimates to compute associated confidence intervals or test statistics for the means and proportions of interest. In comparison with design-based variance estimators computed directly from survey microdata, generalized variance function models have several potential advantages, as will be discussed in this paper, including operational simplicity; increased stability of standard errors; and, for cases involving public-use datasets, reduction of disclosure limitation problems arising from the public release of stratum and cluster indicators.

    These potential advantages, however, may be offset in part by several inferential issues. First, the properties of inferential statistics based on generalized variance functions (e.g., confidence interval coverage rates and widths) depend heavily on the relative empirical magnitudes of the components of variability associated, respectively, with:

    (a) the random selection of a subset of items used in estimation of the generalized variance function model(b) the selection of sample units under a complex sample design (c) the lack of fit of the generalized variance function model (d) the generation of a finite population under a superpopulation model.

    Second, under conditions, one may link each of components (a) through (d) with different empirical measures of the predictive adequacy of a generalized variance function model. Consequently, these measures of predictive adequacy can offer us some insight into the extent to which a given generalized variance function model may be appropriate for inferential use in specific applications.

    Some of the proposed diagnostics are applied to data from the US Survey of Doctoral Recipients and the US Current Employment Survey. For the Survey of Doctoral Recipients, components (a), (c) and (d) are of principal concern. For the Current Employment Survey, components (b), (c) and (d) receive principal attention, and the availability of population microdata allow the development of especially detailed models for components (b) and (c).

    Release date: 2004-09-13

  • Articles and reports: 12-001-X20040016993
    Description:

    The weighting cell estimator corrects for unit nonresponse by dividing the sample into homogeneous groups (cells) and applying a ratio correction to the respondents within each cell. Previous studies of the statistical properties of weighting cell estimators have assumed that these cells correspond to known population cells with homogeneous characteristics. In this article, we study the properties of the weighting cell estimator under a response probability model that does not require correct specification of homogeneous population cells. Instead, we assume that the response probabilities are a smooth but otherwise unspecified function of a known auxiliary variable. Under this more general model, we study the robustness of the weighting cell estimator against model misspecification. We show that, even when the population cells are unknown, the estimator is consistent with respect to the sampling design and the response model. We describe the effect of the number of weighting cells on the asymptotic properties of the estimator. Simulation experiments explore the finite sample properties of the estimator. We conclude with some guidance on how to select the size and number of cells for practical implementation of weighting cell estimation when those cells cannot be specified a priori.

    Release date: 2004-07-14
Data (1)

Data (1) ((1 result))

  • Public use microdata: 56M0002G
    Description:

    This guide is for the Household Internet Use Survey microdata file. The Household Internet Use Survey is being conducted by Statistics Canada on behalf of Industry Canada. The information from this survey will assist the Science and Technology Redesign Project at Statistics Canada to fulfil a three-year contractual agreement between them and the Telecommunications and Policy Branch of Industry Canada. The Household Internet Use Survey is a voluntary survey. It will provide information on the use of computers for communication purposes, and households' access and use of the Internet from home.

    The objective of this survey is to measure the demand for telecommunications services by Canadian households. To assess the demand, we measure the frequency and intensity of use of what is commonly referred to as "the information highway" among other things. This was done by asking questions relating to the accessibility of the Internet to Canadian households both at home, the workplace and a number of other locations. The information collected will be used to update and expand upon previous studies done by Statistics Canada on the topic of the Information Highway.

    Release date: 2004-09-28
Analysis (3)

Analysis (3) ((3 results))

  • Articles and reports: 11-522-X20020016745
    Description:

    The attractiveness of the Regression Discontinuity Design (RDD) rests on its close similarity to a normal experimental design. On the other hand, it is of limited applicability since it is not often the case that units are assigned to the treatment group on the basis of an observable (to the analyst) pre-program measure. Besides, it only allows identification of the mean impact on a very specific subpopulation. In this technical paper, we show that the RDD straightforwardly generalizes to the instances in which the units' eligibility is established on an observable pre-program measure with eligible units allowed to freely self-select into the program. This set-up also proves to be very convenient for building a specification test on conventional non-experimental estimators of the program mean impact. The data requirements are clearly described.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016750
    Description:

    Analyses of data from social and economic surveys sometimes use generalized variance function models to approximate the design variance of point estimators of population means and proportions. Analysts may use the resulting standard error estimates to compute associated confidence intervals or test statistics for the means and proportions of interest. In comparison with design-based variance estimators computed directly from survey microdata, generalized variance function models have several potential advantages, as will be discussed in this paper, including operational simplicity; increased stability of standard errors; and, for cases involving public-use datasets, reduction of disclosure limitation problems arising from the public release of stratum and cluster indicators.

    These potential advantages, however, may be offset in part by several inferential issues. First, the properties of inferential statistics based on generalized variance functions (e.g., confidence interval coverage rates and widths) depend heavily on the relative empirical magnitudes of the components of variability associated, respectively, with:

    (a) the random selection of a subset of items used in estimation of the generalized variance function model(b) the selection of sample units under a complex sample design (c) the lack of fit of the generalized variance function model (d) the generation of a finite population under a superpopulation model.

    Second, under conditions, one may link each of components (a) through (d) with different empirical measures of the predictive adequacy of a generalized variance function model. Consequently, these measures of predictive adequacy can offer us some insight into the extent to which a given generalized variance function model may be appropriate for inferential use in specific applications.

    Some of the proposed diagnostics are applied to data from the US Survey of Doctoral Recipients and the US Current Employment Survey. For the Survey of Doctoral Recipients, components (a), (c) and (d) are of principal concern. For the Current Employment Survey, components (b), (c) and (d) receive principal attention, and the availability of population microdata allow the development of especially detailed models for components (b) and (c).

    Release date: 2004-09-13

  • Articles and reports: 12-001-X20040016993
    Description:

    The weighting cell estimator corrects for unit nonresponse by dividing the sample into homogeneous groups (cells) and applying a ratio correction to the respondents within each cell. Previous studies of the statistical properties of weighting cell estimators have assumed that these cells correspond to known population cells with homogeneous characteristics. In this article, we study the properties of the weighting cell estimator under a response probability model that does not require correct specification of homogeneous population cells. Instead, we assume that the response probabilities are a smooth but otherwise unspecified function of a known auxiliary variable. Under this more general model, we study the robustness of the weighting cell estimator against model misspecification. We show that, even when the population cells are unknown, the estimator is consistent with respect to the sampling design and the response model. We describe the effect of the number of weighting cells on the asymptotic properties of the estimator. Simulation experiments explore the finite sample properties of the estimator. We conclude with some guidance on how to select the size and number of cells for practical implementation of weighting cell estimation when those cells cannot be specified a priori.

    Release date: 2004-07-14
Reference (0)

Reference (0) (0 results)

No content available at this time.

Date modified: