Keyword search

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Type

1 facets displayed. 0 facets selected.

Year of publication

1 facets displayed. 1 facets selected.
Sort Help
entries

Results

All (2)

All (2) ((2 results))

  • Articles and reports: 12-001-X200800210760
    Description:

    The design of a stratified simple random sample without replacement from a finite population deals with two main issues: the definition of a rule to partition the population into strata, and the allocation of sampling units in the selected strata. This article examines a tree-based strategy which plans to approach jointly these issues when the survey is multipurpose and multivariate information, quantitative or qualitative, is available. Strata are formed through a hierarchical divisive algorithm that selects finer and finer partitions by minimizing, at each step, the sample allocation required to achieve the precision levels set for each surveyed variable. In this way, large numbers of constraints can be satisfied without drastically increasing the sample size, and also without discarding variables selected for stratification or diminishing the number of their class intervals. Furthermore, the algorithm tends not to define empty or almost empty strata, thus avoiding the need for strata collapsing aggregations. The procedure was applied to redesign the Italian Farm Structure Survey. The results indicate that the gain in efficiency held using our strategy is nontrivial. For a given sample size, this procedure achieves the required precision by exploiting a number of strata which is usually a very small fraction of the number of strata available when combining all possible classes from any of the covariates.

    Release date: 2008-12-23

  • Articles and reports: 12-001-X200700210494
    Description:

    The Australian Bureau of Statistics has recently developed a generalized estimation system for processing its large scale annual and sub-annual business surveys. Designs for these surveys have a large number of strata, use Simple Random Sampling within Strata, have non-negligible sampling fractions, are overlapping in consecutive periods, and are subject to frame changes. A significant challenge was to choose a variance estimation method that would best meet the following requirements: valid for a wide range of estimators (e.g., ratio and generalized regression), requires limited computation time, can be easily adapted to different designs and estimators, and has good theoretical properties measured in terms of bias and variance. This paper describes the Without Replacement Scaled Bootstrap (WOSB) that was implemented at the ABS and shows that it is appreciably more efficient than the Rao and Wu (1988)'s With Replacement Scaled Bootstrap (WSB). The main advantages of the Bootstrap over alternative replicate variance estimators are its efficiency (i.e., accuracy per unit of storage space) and the relative simplicity with which it can be specified in a system. This paper describes the WOSB variance estimator for point-in-time and movement estimates that can be expressed as a function of finite population means. Simulation results obtained as part of the evaluation process show that the WOSB was more efficient than the WSB, especially when the stratum sample sizes are sometimes as small as 5.

    Release date: 2008-01-03
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (2)

Analysis (2) ((2 results))

  • Articles and reports: 12-001-X200800210760
    Description:

    The design of a stratified simple random sample without replacement from a finite population deals with two main issues: the definition of a rule to partition the population into strata, and the allocation of sampling units in the selected strata. This article examines a tree-based strategy which plans to approach jointly these issues when the survey is multipurpose and multivariate information, quantitative or qualitative, is available. Strata are formed through a hierarchical divisive algorithm that selects finer and finer partitions by minimizing, at each step, the sample allocation required to achieve the precision levels set for each surveyed variable. In this way, large numbers of constraints can be satisfied without drastically increasing the sample size, and also without discarding variables selected for stratification or diminishing the number of their class intervals. Furthermore, the algorithm tends not to define empty or almost empty strata, thus avoiding the need for strata collapsing aggregations. The procedure was applied to redesign the Italian Farm Structure Survey. The results indicate that the gain in efficiency held using our strategy is nontrivial. For a given sample size, this procedure achieves the required precision by exploiting a number of strata which is usually a very small fraction of the number of strata available when combining all possible classes from any of the covariates.

    Release date: 2008-12-23

  • Articles and reports: 12-001-X200700210494
    Description:

    The Australian Bureau of Statistics has recently developed a generalized estimation system for processing its large scale annual and sub-annual business surveys. Designs for these surveys have a large number of strata, use Simple Random Sampling within Strata, have non-negligible sampling fractions, are overlapping in consecutive periods, and are subject to frame changes. A significant challenge was to choose a variance estimation method that would best meet the following requirements: valid for a wide range of estimators (e.g., ratio and generalized regression), requires limited computation time, can be easily adapted to different designs and estimators, and has good theoretical properties measured in terms of bias and variance. This paper describes the Without Replacement Scaled Bootstrap (WOSB) that was implemented at the ABS and shows that it is appreciably more efficient than the Rao and Wu (1988)'s With Replacement Scaled Bootstrap (WSB). The main advantages of the Bootstrap over alternative replicate variance estimators are its efficiency (i.e., accuracy per unit of storage space) and the relative simplicity with which it can be specified in a system. This paper describes the WOSB variance estimator for point-in-time and movement estimates that can be expressed as a function of finite population means. Simulation results obtained as part of the evaluation process show that the WOSB was more efficient than the WSB, especially when the stratum sample sizes are sometimes as small as 5.

    Release date: 2008-01-03
Reference (0)

Reference (0) (0 results)

No content available at this time.

Date modified: