Calibration alternatives to poststratification for doubly classified data - ARCHIVED

Articles and reports: 12-001-X201200111683


We consider alternatives to poststratification for doubly classified data in which at least one of the two-way cells is too small to allow the poststratification based upon this double classification. In our study data set, the expected count in the smallest cell is 0.36. One approach is simply to collapse cells. This is likely, however, to destroy the double classification structure. Our alternative approaches allows one to maintain the original double classification of the data. The approaches are based upon the calibration study by Chang and Kott (2008). We choose weight adjustments dependent upon the marginal classifications (but not full cross classification) to minimize an objective function of the differences between the population counts of the two way cells and their sample estimates. In the terminology of Chang and Kott (2008), if the row and column classifications have I and J cells respectively, this results in IJ benchmark variables and I + J - 1 model variables. We study the performance of these estimators by constructing simulation simple random samples from the 2005 Quarterly Census of Employment and Wages which is maintained by the Bureau of Labor Statistics. We use the double classification of state and industry group. In our study, the calibration approaches introduced an asymptotically trivial bias, but reduced the MSE, compared to the unbiased estimator, by as much as 20% for a small sample.

Issue Number: 2012001
Author(s): Chang, Ted C.

Main Product: Survey Methodology

FormatRelease dateMore information
PDFJune 27, 2012